Simulink® Fixed Point™

User’s Guide

R2012b

1LAB
IMULINK"

LN N

How to Contact MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup

www . mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
Simulink® Fixed Point™ User’s Guide

© COPYRIGHT 1995-2012 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used

or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See

www . mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

March 1995 First Printing New for Version 1.0

April 1997 Second Printing Revised for MATLAB 5

January 1999 Third Printing Revised for MATLAB 5.3 (Release 11)

September 2000 Fourth Printing New for Version 3.0 (Release 12)

August 2001 Fifth Printing Minor revisions for Version 3.1 (Release 12.1)

November 2002 Sixth Printing Minor revisions for Version 4.0 (Release 13)

June 2004 Seventh Printing Revised for Version 5.0 (Release 14) (Renamed from
Fixed-Point Blockset)

October 2004 Online only Minor revisions for Version 5.0.1 (Release 14SP1)

March 2005 Online only Minor revisions for Version 5.1 (Release 14SP2)

September 2005 Online only Minor revisions for Version 5.1.2 (Release 14SP3)

March 2006 Online only Revised for Version 5.2 (Release 2006a)

May 2006 Online only Revised for Version 5.2.1 (Release 2006a+)

September 2006 Online only Revised for Version 5.3 (Release 2006b)

March 2007 Eighth Printing Revised for Version 5.4 (Release 2007a)

September 2007 Online only Revised for Version 5.5 (Release 2007b)

March 2008 Online only Revised for Version 5.6 (Release 2008a)

October 2008 Online only Revised for Version 6.0 (Release 2008b)

March 2009 Online only Revised for Version 6.1 (Release 2009a)

September 2009 Online only Revised for Version 6.2 (Release 2009b)

March 2010 Online only Revised for Version 6.3 (Release 2010a)

September 2010 Online only Revised for Version 6.4 (Release 2010b)

April 2011 Online only Revised for Version 6.5 (Release 2011a)

September 2011 Online only Revised for Version 7 (Release 2011b)

March 2012 Online only Revised for Version 7.1 (Release 2012a)

September 2012 Online only Revised for Version 7.2 (Release 2012b)

Getting Started

Product Description
Key Features

What You Need to Get Started
Installation0 e
Sharing Fixed-Point Models

Physical Quantities and Measurement Scales
Introduction
Selecting a Measurement Scale
Selecting a Measurement Scale

Why Use Fixed-Point Hardware?

Why Use the Simulink Fixed Point Software?

Developing and Testing Fixed-Point Systems

Supported Data Typescciiiiieu....

Simulink Fixed Point Software Features
Configuring Blocks with Fixed-Point Output
Configuring Blocks with Fixed-Point Parameters
Passing Fixed-Point Data Between Simulink Models and

the MATLAB Softwarecccviueinn...
Automatic Data Typing Tools
Code Generation Capabilitieso....

Cast from Doubles to Fixed Point
About This Example,
Block Descriptionsiiiiinnnnnennnan.
Simulations i e

1-2

1-3
1-3

vi

Contents

Data Types and Scaling

2

Data Types and Scaling in Digital Hardware

Fixed-Point Numbers
Fixed-Point Numbers
Signed Fixed-Point Numbers
Binary Point Interpretation
Scaling ... e e
Quantizationiiiiii e e
Rangeand Precision,
Constant Scaling for Best Precision
Fixed-Point Data Type and Scaling Notation
Scaled Doubles i
Use Scaled Doubles to Avoid Precision Loss
Display Data Types for Ports in Your Model

Floating-Point Numbers
Floating-Point Numbers
Scientific Notation,
The IEEE Format
Rangeand Precision iiuu...
Exceptional Arithmetic

Arithmetic Operations

3

Fixed-Point Arithmetic Operations

Precision e
Limitations on Precision
Rounding i
Choose a RoundingModecvvvnn...
Rounding Modes for Fixed-Point Simulink Blocks
Rounding Mode: Ceiling,
Rounding Mode: Convergentccovuennn.
Rounding Mode: Floor

3-2

3-3

3-4

Rounding Mode: Nearestcccunnn.. 3-11

Rounding Mode: Round 3-12
Rounding Mode: Simplest 3-14
Rounding Mode: Zerocco .. 3-17
Pad with Trailing Zerosccuuiiiiunnnn. 3-19
Limitations on Precision and Errors 3-20
Maximize Precisioncc0iiiiiinnnnn.. 3-21
Net Slope and Net Bias Precision 3-21
Detect Net Slope and Net Bias Precision Issues 3-24
Detect Fixed-Point Constant Precision Loss 3-25
Range 3-27
Limitationson Range 3-27
What Are Saturation and Wrapping? 3-28
Saturation and Wrappingcciuiiiinieeeno... 3-28
Guard Bits e e 3-31
Determine the Range of Fixed-Point Numbers 3-31
Recommendations for Arithmetic and Scaling 3-33
Arithmetic Operations and Fixed-Point Scaling 3-33
Addition e 3-34
Accumulation e 3-37
Multiplication it 3-37
[7= s K 3-39
Division 3-41
SUMMATY .ottt ittt ettt 3-43
Parameter and Signal Conversions 3-44
Introduction 3-44
Parameter Conversionsuvveieennnnnnnnn. 3-45
Signal Conversionsuttiiiinnnneeneeenennn 3-46
Rules for Arithmetic Operations 3-49
Introduction 3-49
Computational Units, 3-49
Addition and Subtraction 3-50
The Summation Process 3-52
Multiplication0t 3-55
The Multiplication Process 3-60
Division ... 3-62
The Division Processcouiiiiiiiinnnn. 3-64
Shifts .o 3-65

vii

viii

Contents

Conversions and Arithmetic Operations

Realization Structures

4

Realizing Fixed-Point Digital Filters
Introduction i
Realizations and Data Types

Targeting an Embedded Processor
Introduction i i
Size ASSUMPLIONS ...ttt ittt
Operation AssSumptionsuuiiiiinneeeeeeeenn.
DesignRules i

Canonical Forms
Canonical Forms
Direct Form IT i,
Series Cascade Form
Parallel Form

4-2
4-2
4-2

4-4

Fixed-Point Advisor

5

Preparation for Fixed-Point Conversion
Introduction
Best Practices it
Data Type Propagation Errors
Run the Fixed-Point Advisor
FixaTask Failure 0.,
Manually Fixing Failures
Automatically Fixing Failures
Batch Fixing Failures
Restore Points,
Savea Restore Point
LoadaRestorePoint

Converting a Model from Floating- to Fixed-Point Using
SimulationData
About This Example
Starting the Preparation
Preparing Model for Conversion
Prepare for Data Typing and Scaling
Propose Data Types Based on the Simulation Reference

Run ... e
Apply the New Fixed-Point Data Types
Simulate the Model Using New Fixed-Point Settings

Fixed-Point Tool

6

Overview of the Fixed-Point Tool
Introduction to the Fixed-Point Tool
Using the Fixed-Point Tool

Run Managementcciiiiuunnn.
About Run Management
Why Use Shortcuts to Manage Runs
When to Use Shortcuts to Manage Runs
Add Shortecutso e
Edit Shortcutsc i
Delete Shortcuts ...
Capture Current Model Settings Using the Shortcut

Editor e e

Debug a Fixed-Point Model
Simulating the Model to See the Initial Behavior
Debugging the Model
Simulating the Model Using a Different Input Stimulus ..
Debugging the Model with the New Input
Proposing Fraction Lengths for Math2 Based on Simulation

Results i e
Verifying the New Settings

Logging Simulation Minimum and Maximum Values for
Referenced Models

6-2
6-2
6-2

6-5

6-7

ix

Viewing Simulation Minimum and Maximum Values for

Referenced Models 6-19
Fixed-Point Instrumentation and Data Type Override

SEttINgS .ottt e 6-21
See AlSO oo e 6-21

Log Simulation Minimum and Maximum Values for

Referenced Models 6-22
See AlSO i e e 6-27
Propose Data Types for a Referenced Model 6-28

Logging Simulation Minimum and Maximum Values for
a MATLAB FunctionBlock 6-32
See AlSO .ot ii 6-32

Log Simulation Minimum and Maximum Values for a

MATLAB FunctionBlock 6-33
See AlSO i e e 6-35
View Signal Names in the Fixed-Point Tool 6-36

Automatically Converting a Floating-Point
Model to Fixed Point

7

Contents

Learning Objectivescuiiiiiiininnn... 7-2
Model Descriptiont iiunnnn. 7-4
Model Overviewuiiiiiiiiiiiiinnnnnn. 7-4
Model Set Up ..o iiiii i e 7-5
Before YouBegin i ... 7-7

Automatically Converting a Floating-Point Model to
Fixed Point i ... 7-9
OpentheModel 7-9

Prepare Floating-Point Model for Conversion to Fixed
Point e
Propose Data Types,
Apply Fixed-Point Data Types
Verify Fixed-Point Settings
Test Fixed-Point Settings With New Input Data
Gather a Floating-Point Benchmark
Propose Data Types for the New Input
Apply the New Fixed-Point Data Types
Verify New Fixed-Point Settings
Prepare for Code Generation

Key Points to Remember

Where to Learn More

Producing Lookup Table Data

8

Producing Lookup Table Data

Worst-Case Error for a Lookup Table
What Is Worst-Case Error for a Lookup Table?
Approximate the Square Root Function

Create Lookup Tables for a Sine Function
Introduction i i
Parameters for fixpt_lookl_func_approx
Setting Function Parameters for the Lookup Table
Using errmax with Unrestricted Spacing
Using nptsmax with Unrestricted Spacing
Using errmax with Even Spacing
Using nptsmax with Even Spacing
Using errmax with Power of Two Spacing
Using nptsmax with Power of Two Spacing
Specifying Both errmax and nptsmax
Comparison of Example Results

8-3

xi

Use Lookup Table Approximation Functions 8-21

Effects of Spacing on Speed, Error, and Memory

Usage ... e 8-22
Criteria for Comparing Types of Breakpoint Spacing 8-22
Model That Illustrates Effects of Breakpoint Spacing 8-22
Data ROM Required for Each Lookup Table 8-23
Determination of Out-of-Range Inputs 8-24
How the Lookup Tables Determine Input Location 8-24
Interpolation for Each Lookup Table 8-26
Summary of the Effects of Breakpoint Spacing 8-29

Automatic Data Typing

92

About Automatic Data Typing 9-2

Before Using the Fixed-Point Tool to Propose Data
Types for Your Simulink Model 9-3

Best Practices for Using the Fixed-Point Tool to

Propose Data Types for Your Simulink Model 9-5
Use a Known Working Simulink Model 9-5
Back Up Your Simulink Model 9-5
Capture the Current Fixed-Point Instrumentation and

Data Type Override Settings 9-5
Convert Individual Subsystems 9-5
Isolate the System Under Conversion 9-5
Use Lock Output Data Type Setting 9-6
Save Simulink Signal Objects 9-6
Test Update Diagram Failure 9-6

Models That Might Cause Data Type Propagation

Errors 9-8

Automatic Data Typing Using Simulation Data 9-11
Workflow for Automatic Data Typing Using Simulation

Data e 9-11

xii Contents

Set UptheModel,
Prepare the Model for Conversion
Gather a Floating-Point Benchmark
Proposing Data Typescoviiiiiinnn.
Propose Data Types,
Examine Results to Resolve Conflicts
Apply Proposed Data Types,
Verify New Settingsc0iiiiiiiinnnnn..
Automatic Data Typing of Simulink Signal Objects

Automatic Data Typing Using Derived Minimum and
Maximum Values i,
Prerequisites for Automatic Data Typing Using Derived

Minimum and Maximum Values
Workflow for Automatic Data Typing Using Derived

Data e
Set UptheModel
Prepare Model Prior to Automatic Data Typing Using

DerivedData,
Derive Minimum and Maximum Values
Resolve Range AnalysisIssues
Proposing Data Typescuuiiiiinn..
Propose Data Types,
Examine Results to Resolve Conflicts
Apply Proposed Data Typescciiiiiieee...
Update Diagramcciiiiiiiiiinnnnn.

Propose Fraction Lengths
Propose Fraction Lengths
About the Feedback Controller Example Model
Propose Fraction Lengths Using Simulation Range

Data ... e

Propose Word Lengths
How the Fixed-Point Tool Proposes Word Lengths
Propose Word Lengths
Propose Word Lengths Based on Simulation Data

Propose Data Types Using Multiple Simulations
About This Example
Running the Simulation

xiii

xiv

View Simulation Results 9-69

Compare Runs i, 9-69
Compare Signals ittt 9-70
Inspect Signals 9-71
Histogram Plotof Signal 9-72
See AlSO o e e 9-73

Viewing Results With the Simulation Data Inspector .. 9-75

Why Use the Simulation Data Inspector 9-75
When to Use the Simulation Data Inspector 9-75
What You Can Inspect in the Simulation Data Inspector .. 9-75
See AlSO i e e 9-76

10

Contents

How Range AnalysisWorks 10-2
System Requirementscoiiiiienieeenn... 10-2
Analyzing a Model with Range Analysis 10-2
Automatic Stubbing 10-5
Model Compatibility with Range Analysis 10-6

Derive Ranges i 10-7

Derive Ranges at the Subsystem Level 10-10
Deriving Ranges at the Subsystem Level 10-10
Derive Ranges at the Subsystem Level 10-11

View Derived Range Information in the Fixed-Point

Tool .. e 10-12
Range Analysis Examples 10-13
Derive Ranges Using Design Minimum and Maximum
Valueso e e 10-13
Derive Ranges Using Block Initial Conditions 10-15
Derive Ranges Using Design Range Information for
Simulink.Parameter Objects 10-17
Insufficient Design Range Information 10-20

Providing More Design Range Information 10-23

Fixing Design Range Conflicts 10-25
Derive Ranges for a Referenced Model 10-28
See AlSO i e e 10-32
Propose Data Types for a Referenced Model 10-33
See AlSO i e e 10-34
Deriving Ranges for a Referenced Model 10-35
Viewing Derived Minimum and Maximum Values for
Referenced Models iiiin.. 10-35
Data Type Override Settingsc.... 10-36
See AlSO i e 10-36
Unsupported Simulink Software Features 10-37
Supported and Unsupported Simulink Blocks 10-39
Overview of Simulink Block Support 10-39
Limitations of Support for Model Blocks 10-48

Code Generation

Generating and Deploying Production Code 11-2
Code Generation Supportcccuvviv... 11-3
Introduction i 11-3
Languages i e 11-3
DataTypes ... i e e e e 11-3
Rounding Modes, 11-3
Overflow Handling, 11-3
Blocks ...t e 114
Scaling ... e 11-4
Accelerating Fixed-Point Models 11-5

XV

xvi

Contents

Using External Mode or Rapid Simulation Target
Introduction
External Mode i
Rapid Simulation Target

Optimize Your Generated Code
Tips for Reducing ROM Consumption or Model Execution
TIme ..ttt e e e
Restrict Data Type Word Lengths
Avoid Fixed-Point Scalings with Bias
Wrap and Round to Floor or Simplest
Limit the Use of Custom Storage Classes
Limit the Use of Unevenly Spaced Lookup Tables
Minimize the Variety of Similar Fixed-Point Utility
Functions it
Handle Net Slope Correctioncouueeeeeen...
Use Integer Division to Handle Net Slope Correction
Use Integer Division to Handle Net Slope to Improve
Numerical Accuracy of Simulation Results
Use Integer Division to Handle Net Slope to Improve
Efficiency of Generated Code
Optimize Generated Code Using Specified Minimum and
Maximum Values,
Use Specified Minimum and Maximum Values to Eliminate
Unnecessary Utility Functions

Optimizing Your Generated Code with the Model
AdvVisor e e
Use Model Advisor to Optimize Generated Code
Optimize Lookup Table Data
Reduce Cumbersome Multiplications
Optimize the Number of Multiply and Divide Operations ..
Reduce Multiplies and Divides with Nonzero Bias
Eliminate Mismatched Scaling
Minimize Internal Conversion Issues
Use the Most Efficient Rounding
Optimize Net Slope Correctioncouueeeeeeo...

Fixed-Point Advisor Reference

12

Fixed-Point Advisor i, 12-2
Fixed-Point Advisor Overviewcocvvun... 12-3
Prepare Model for Conversion 12-6
Prepare Model for Conversion Overview 12-7
Verify model simulation settings 12-8
Verify update diagram status 12-9
Address unsupported blocks 12-10
Set up signal loggingiiiiiiiinn... 12-12
Create simulation reference data 12-13
Verify Fixed-Point Conversion Guidelines Overview 12-15
Check model configuration data validity diagnostic
parameters settingsi i 12-16
Implement logic signals as Booleandata 12-17
Check for proper bususageccuiiiiun.... 12-18
Simulation range checking 12-19
Check for implicit signal resolution 12-20
Prepare for Data Typing and Scaling 12-21
Prepare for Data Typing and Scaling Overview 12-22
Review locked data type settings 12-23
Remove output data type inheritance 12-24
Relax input data type settings 12-26
Verify Stateflow charts have strong data typing with
Simulink 12-28
Remove redundant specification between signal objects and
blocks . ..ot e 12-29
Verify hardware selection 12-31
Specify block minimum and maximum values 12-33

Return to the Fixed-Point Tool to Perform Data Typing
and Scaling 12-35
See AlSO .o i i 12-35

xXvii

xviii

Writing Fixed-Point S-Functions

A

Contents

Data Type Supportcciiiiiiiiiiinnnn... A-2
Supported Data Types iiiiiiiiiinn... A-2
The Treatment of Integers A-3
Data Type Overridec.oiiiiiininnnnnnn. A-3

Structure of the S-Function A-5

Storage Containersccuiiiiininnnn... A-7
Introduction i e A-7
Storage Containers in Simulation A-7
Storage Containers in Code Generation A-10

Data TypeIDs ..., A-13
The Assignment of Data TypeIDs A-13
Registering Data Typesciiiiiiniiinnn. A-14
Setting and Getting Data Types A-16
Getting Information About Data Types A-17
Converting Data Typesccoiiiiiiiinnneennn.. A-19

Overflow Handling and Rounding Methods A-20
Tokens for Overflow Handling and Rounding Methods ... A-20
Overflow Logging Structure, A-21

Create MEX-Files i, A-23

Fixed-Point S-Function Examples A-24
List of Fixed-Point S-Function Examples A-24
Get the Input Port Data Type A-25
Set the Output Port Data Type A-27
Interpret an Input Value A-28
Write an Output Value i, A-30
Use the Input Data Type to Determine the Output Data

g 174 0= A-32

API Function Reference A-33

Index

xix

XX Contents

Getting Started

¢ “Product Description” on page 1-2

¢ “What You Need to Get Started” on page 1-3

¢ “Physical Quantities and Measurement Scales” on page 1-5

¢ “Why Use Fixed-Point Hardware?” on page 1-13

e “Why Use the Simulink® Fixed Point™ Software?” on page 1-15
¢ “Developing and Testing Fixed-Point Systems” on page 1-16

e “Supported Data Types” on page 1-18

* “Simulink® Fixed Point™ Software Features” on page 1-19

e “Cast from Doubles to Fixed Point” on page 1-38

1 Getting Started

Product Description
Design and simulate fixed-point systems

Simulink® Fixed Point™ enables the fixed-point capabilities of the Simulink
product family, letting you use those products to design, simulate, and
implement fixed-point control and signal processing algorithms.

With Simulink Fixed Point, you specify fixed-point data attributes, including
word length and scaling for signals and parameters, in your model. You

can perform bit-true simulations to observe the effects of limited range

and precision on designs built with Simulink, Stateflow®, DSP System
Toolbox™, and other Simulink products. Automated fixed-point advisors
guide you through the steps of converting floating-point models to fixed point.
Additional tools analyze your model or use simulation results to recommend
data types and scaling.

Simulink Fixed Point supports C, HDL, and PLC code generation with
Simulink code-generation products.

Key Features
¢ Fixed-point modeling and simulation in Simulink, Stateflow, and other
Simulink products

® Bit-true, fixed-point arithmetic for code generated by Simulink C, HDL,
and PLC code generation products

* Automated advisors that convert models from floating- to fixed-point data
types

® Analysis tools for deriving ranges for all signals based on design information
® Data type tools that use range data to recommend word length and scaling
e Control of fixed-point data type and of scaling from 1- to 128-bit word sizes

e Customizable fixed-point operators and math functions for embedded
code generation

What You Need to Get Started

What You Need to Get Started

In this section...

“Installation” on page 1-3

“Sharing Fixed-Point Models” on page 1-3

Installation

To determine if the Simulink Fixed Point software is installed on your system,
type

ver

at the MATLAB® command line. When you enter this command, the MATLAB
Command Window displays information about the version of MATLAB
software you are running, including a list of installed add-on products and
their version numbers. Check the list to see if the Simulink Fixed Point
software appears.

For information about installing this product, refer to the installation
documentation.

If you experience installation difficulties and have Web access, look for
the installation and license information at the MathWorks® Web site
(http://www.mathworks.com/support).

Sharing Fixed-Point Models

You can edit a model containing fixed-point blocks without the Simulink
Fixed Point software. However, you must have a Simulink Fixed Point
software license to

Update a Simulink diagram (Ctrl+D) containing fixed-point data types

¢ Run a model containing fixed-point data types

Generate code from a model containing fixed-point data types

Log the minimum and maximum values produced by a simulation

¢ Automatically scale the output of a model

http://www.mathworks.com/support

1 Getting Started

1-4

If you do not have the Simulink Fixed Point software, you can work with a
model containing Simulink blocks with fixed-point settings as follows:

1 In the Model Hierarchy pane, select the root model.
2 From the Simulink model Analysis menu, select Fixed-Point Tool.

In the Fixed-Point Tool:
¢ Set the Fixed-point instrumentation mode parameter to Force Off.
¢ Set the Data type override parameter to Double or Single.

® Set the Data type override applies to parameter to ALl numeric
types.

3 If you use fi objects or embedded numeric data types in your model,
set the fipref DataTypeOverride property to TrueDoubles and the
DataTypeOverride property to A1l numeric types

At the MATLAB command line, enter:

p = fipref('DataTypeOverride', 'TrueDoubles’,
'DataTypeOverrideAppliesTo', 'AllNumericTypes');

Note If you use fi objects or embedded numeric data types in your model or
workspace, you might introduce fixed-point data types into your model. You
can set fipref to prevent the checkout of a Fixed-Point Toolbox™ license.

Physical Quantities and Measurement Scales

Physical Quantities and Measurement Scales

In this section...

“Introduction” on page 1-5
“Selecting a Measurement Scale” on page 1-6

“Selecting a Measurement Scale” on page 1-8

Introduction

The decision to use fixed-point hardware is simply a choice to represent
numbers in a particular form. This representation often offers advantages
in terms of the power consumption, size, memory usage, speed, and cost of
the final product.

A measurement of a physical quantity can take many numerical forms. For
example, the boiling point of water is 100 degrees Celsius, 212 degrees
Fahrenheit, 373 kelvin, or 671.4 degrees Rankine. No matter what number is
given, the physical quantity is exactly the same. The numbers are different
because four different scales are used.

Well known standard scales like Celsius are very convenient for the exchange
of information. However, there are situations where it makes sense to create
and use unique nonstandard scales. These situations usually involve making
the most of a limited resource.

For example, nonstandard scales allow map makers to get the maximum
detail on a fixed size sheet of paper. A typical road atlas of the USA will show
each state on a two-page display. The scale of inches to miles will be unique
for most states. By using a large ratio of miles to inches, all of Texas can fit
on two pages. Using the same scale for Rhode Island would make poor use of
the page. Using a much smaller ratio of miles to inches would allow Rhode
Island to be shown with the maximum possible detail.

Fitting measurements of a variable inside an embedded processor is similar to
fitting a state map on a piece of paper. The map scale should allow all the
boundaries of the state to fit on the page. Similarly, the binary scale for a
measurement should allow the maximum and minimum possible values to
fit. The map scale should also make the most of the paper in order to get

1-5

1 Getting Started

1-6

maximum detail. Similarly, the binary scale for a measurement should make
the most of the processor in order to get maximum precision.

Use of standard scales for measurements has definite compatibility
advantages. However, there are times when it is worthwhile to break
convention and use a unique nonstandard scale. There are also occasions
when a mix of uniqueness and compatibility makes sense. See the sections
that follow for more information.

Selecting a Measurement Scale

Suppose that you want to make measurements of the temperature of liquid
water, and that you want to represent these measurements using 8-bit
unsigned integers. Fortunately, the temperature range of liquid water 1s
limited. No matter what scale you use, liquid water can only go from the
freezing point to the boiling point. Therefore, this is the range of temperatures
that you must capture using just the 256 possible 8-bit values: 0,1,2,...,255.

One approach to representing the temperatures is to use a standard scale. For
example, the units for the integers could be Celsius. Hence, the integers 0 and
100 represent water at the freezing point and at the boiling point, respectively.
On the upside, this scale gives a trivial conversion from the integers to degrees
Celsius. On the downside, the numbers 101 to 255 are unused. By using this
standard scale, more than 60% of the number range has been wasted.

A second approach is to use a nonstandard scale. In this scale, the integers

0 and 255 represent water at the freezing point and at the boiling point,
respectively. On the upside, this scale gives maximum precision since there
are 254 values between freezing and boiling instead of just 99. On the
downside, the units are roughly 0.3921568 degree Celsius per bit so the
conversion to Celsius requires division by 2.55, which is a relatively expensive
operation on most fixed-point processors.

A third approach is to use a “semistandard” scale. For example, the integers
0 and 200 could represent water at the freezing point and at the boiling
point, respectively. The units for this scale are 0.5 degrees Celsius per bit.
On the downside, this scale doesn’t use the numbers from 201 to 255, which
represents a waste of more than 21%. On the upside, this scale permits
relatively easy conversion to a standard scale. The conversion to Celsius
involves division by 2, which is a very easy shift operation on most processors.

Physical Quantities and Measurement Scales

Measurement Scales: Beyond Multiplication

One of the key operations in converting from one scale to another is
multiplication. The preceding case study gave three examples of conversions
from a quantized integer value @ to a real-world Celsius value V that involved
only multiplication:

o
1;)(())00 @, Conversion 1
o
V= 100 CQ2 Conversion 2
255
o
1;)800 3 Conversion 3

Graphically, the conversion is a line with slope S, which must pass through
the origin. A line through the origin is called a purely linear conversion.
Restricting yourself to a purely linear conversion can be very wasteful and it
is often better to use the general equation of a line:

V=8Q + B.

By adding a bias term B, you can obtain greater precision when quantizing
to a limited number of bits.

The general equation of a line gives a very useful conversion to a quantized
scale. However, like all quantization methods, the precision is limited and
errors can be introduced by the conversion. The general equation of a line
with quantization error is given by

V =SQ+ B+ Error.

If the quantized value @ is rounded to the nearest representable number, then

—E < Error < E
2 2

1-7

1 Getting Started

1-8

That is, the amount of quantization error is determined by both the number of
bits and by the scale. This scenario represents the best-case error. For other
rounding schemes, the error can be twice as large.

Selecting a Measurement Scale

On typical electronically controlled internal combustion engines, the flow

of fuel is regulated to obtain the desired ratio of air to fuel in the cylinders
just prior to combustion. Therefore, knowledge of the current air flow rate
1s required. Some manufacturers use sensors that directly measure air flow,
while other manufacturers calculate air flow from measurements of related
signals. The relationship of these variables is derived from the ideal gas
equation. The ideal gas equation involves division by air temperature. For
proper results, an absolute temperature scale such as kelvin or Rankine
must be used in the equation. However, quantization directly to an absolute
temperature scale would cause needlessly large quantization errors.

The temperature of the air flowing into the engine has a limited range. On a
typical engine, the radiator is designed to keep the block below the boiling
point of the cooling fluid. Assume a maximum of 225°F (380 K). As the

air flows through the intake manifold, it can be heated to this maximum
temperature. For a cold start in an extreme climate, the temperature can be
as low as -60°F (222 K). Therefore, using the absolute kelvin scale, the range
of interest is 222 K to 380 K.

The air temperature needs to be quantized for processing by the embedded
control system. Assuming an unrealistic quantization to 3-bit unsigned
numbers: 0,1,2,...,7, the purely linear conversion with maximum precision is

380K
7.5 bit

Q.

The quantized conversion and range of interest are shown in the following
figure.

Physical Quantities and Measurement Scales

Visualization of Quantized Conversion

B T ! I

Quantized Value, Q (50.6667 K/bit) with Bias =0 K

V=222 K

V=38 K

0 50 100

Notice that there are 7.5 possible quantization values. This is because only
half of the first bit corresponds to temperatures (real-world values) greater

than zero.

150 200 250
Real World Value, V(K)

300

The quantization error is —25.33 K/bit < Error < 25.33 K/bit.

350

400

1 Getting Started

1-10

The range of interest of the quantized conversion and the absolute value of
the quantized error are shown in the following figure.

Visualization of Quantized Conversion
400 - I I 1 I T I I

(%)
(%))
(=]

Quantized Value, Q
g t
[#)] Q
Q Q

pein]n] i 1 L 1 L 1 1 L =
240 260 280 300 320 240 2360 380

Real World Value, V(K)

=
=2
T

%)
(=]
T

1

e
2

Quantization Error (K/bit)
ra
(=]

240 260 280 300 320 340 360 380
Real World Value, V(K)

=2

As an alternative to the purely linear conversion, consider the general linear
conversion with maximum precision:

V:(380 K-222K

8

)Q+222 K+0.5[—380 K -222 K)

8

Physical Quantities and Measurement Scales

The quantized conversion and range of interest are shown in the following
figure.

Visualization of Quantized Conversion

8 T T T T T T T T T
e
e T
o)
— V=222 K
o
[~] — o
Il
g
@ sl —_ 1
=
E
2 af — -
2 al —_— _
o
!
< of —]
4
2 V=380 K
> 1 — _
la=}
3
X L -
&

- 4] 50 100 150 200 250 300 350 400

Real World Value, V (K)

The quantization error is -9.875 K/bit < Error < 9.875 K/bit, which 1is
approximately 2.5 times smaller than the error associated with the purely
linear conversion.

1-11

1 Getting Started

The range of interest of the quantized conversion and the absolute value of
the quantized error are shown in the following figure.

Visualization of Quantized Conversion
400 - 1 I T 1 1 1 I .|

Quantized Value, Q
[42) L
Q (4]
[=) [=]

M
%)}
=]

200k I 1 ! L 1 1 1 -
240 260 280 300 320 340 360 380

Real World Value, V (K)

.
(=
T

1

w
(=]
T

1

=

=
U

|

Quantization Error (K/bit)
N
[=]

240 260 280 300 320 340 360 380
Real World Value, V (K)

2

Clearly, the general linear scale gives much better precision than the purely
linear scale over the range of interest.

1-12

Why Use Fixed-Point Hardware?

Why Use Fixed-Point Hardware?

Digital hardware is becoming the primary means by which control systems
and signal processing filters are implemented. Digital hardware can be
classified as either off-the-shelf hardware (for example, microcontrollers,
microprocessors, general-purpose processors, and digital signal processors)
or custom hardware. Within these two types of hardware, there are many
architecture designs. These designs range from systems with a single
instruction, single data stream processing unit to systems with multiple
instruction, multiple data stream processing units.

Within digital hardware, numbers are represented as either fixed-point or
floating-point data types. For both these data types, word sizes are fixed at

a set number of bits. However, the dynamic range of fixed-point values is
much less than floating-point values with equivalent word sizes. Therefore,
in order to avoid overflow or unreasonable quantization errors, fixed-point
values must be scaled. Since floating-point processors can greatly simplify the
real-time implementation of a control law or digital filter, and floating-point
numbers can effectively approximate real-world numbers, then why use a
microcontroller or processor with fixed-point hardware support?

¢ Size and Power Consumption — The logic circuits of fixed-point
hardware are much less complicated than those of floating-point hardware.
This means that the fixed-point chip size is smaller with less power
consumption when compared with floating-point hardware. For example,
consider a portable telephone where one of the product design goals is to
make it as portable (small and light) as possible. If one of today’s high-end
floating-point, general-purpose processors is used, a large heat sink and
battery would also be needed, resulting in a costly, large, and heavy
portable phone.

¢ Memory Usage and Speed — In general fixed-point calculations require
less memory and less processor time to perform.

® Cost — Fixed-point hardware is more cost effective where price/cost is
an important consideration. When digital hardware is used in a product,
especially mass-produced products, fixed-point hardware costs much less
than floating-point hardware and can result in significant savings.

After making the decision to use fixed-point hardware, the next step is to
choose a method for implementing the dynamic system (for example, control

1-13

1 Getting Started

system or digital filter). Floating-point software emulation libraries are
generally ruled out because of timing or memory size constraints. Therefore,
you are left with fixed-point math where binary integer values are scaled.

1-14

Why Use the Simulink® Fixed Point™ Software?

Why Use the Simulink Fixed Point Software?

The Simulink Fixed Point software allows you to efficiently design control
systems and digital filters that you will implement using fixed-point
arithmetic. With the Simulink Fixed Point software, you can construct
Simulink and Stateflow models that contain detailed fixed-point information
about your systems. You can then perform bit-true simulations with the
models to observe the effects of limited range and precision on your designs.

You can configure the Fixed-Point Tool to automatically log the overflows,
saturations, and signal extremes of your simulations. You can also use it to
automate data typing and scaling decisions and to compare your fixed-point
implementations against idealized, floating-point benchmarks.

You can use the Simulink Fixed Point software with the Simulink
Coder™ product to automatically generate efficient, integer-only C code
representations of your designs. You can use this C code in a production
target or for rapid prototyping. In addition, you can use the Simulink Fixed
Point software with the Embedded Coder™ product to generate real-time C
code for use on an integer production, embedded target. You can also use
SimulinkFixed Point with HDL Coder™ to generate portable, synthesizable
VHDL and Verilog code from Simulink models and Stateflow charts.

1-15

1 Getting Started

Developing and Testing Fixed-Point Systems

The Simulink Fixed Point software provides tools that aid in the development
and testing of fixed-point dynamic systems. You directly design dynamic
system models in the Simulink software that are ready for implementation on
fixed-point hardware. The development cycle is illustrated below.

Iodel plant or
gignal gource

IModel fixed-point
controller or filter

Degign
requirements
rmet?

Uze the model as a
specification for
creating production|
code

1-16

Developing and Testing Fixed-Point Systems

Using the MATLAB, Simulink, and Simulink Fixed Point software, you follow
these steps of the development cycle:

1 Model the system (plant or signal source) within the Simulink software
using double-precision numbers. Typically, the model will contain
nonlinear elements.

2 Design and simulate a fixed-point dynamic system (for example, a control
system or digital filter) with fixed-point Simulink blocks that meets the
design, performance, and other constraints.

3 Analyze the results and go back to step 1 if needed.

When you have met the design requirements, you can use the model as a
specification for creating production code using the Simulink Coder product or
generating HDL code using the HDL Coder product.

The above steps interact strongly. In steps 1 and 2, there is a significant
amount of freedom to select different solutions. Generally, you fine-tune the
model based upon feedback from the results of the current implementation
(step 3). There is no specific modeling approach. For example, you may obtain
models from first principles such as equations of motion, or from a frequency
response such as a sine sweep. There are many controllers that meet the
same frequency-domain or time-domain specifications. Additionally, for each
controller there are an infinite number of realizations.

The Simulink Fixed Point software helps expedite the design cycle by allowing

you to simulate the effects of various fixed-point controller and digital filter
structures.

1-17

1 Getting Started

Supported Data Types

The Simulink Fixed Point software supports the following integer and
fixed-point data types for simulation and code generation:

Unsigned data types from 1 to 128 bits

Signed data types from 2 to 128 bits

Boolean, double, and single

Scaled doubles

The software supports all scaling choices including pure integer, binary point,
and slope bias. For slope bias scaling, it does not support complex fixed-point
types that have non-zero bias or non-trivial slope.

The save data type support extends to signals, parameters, and states.

1-18

Simulink® Fixed Point™ Software Features

Simulink Fixed Point Software Features

In this section...

“Configuring Blocks with Fixed-Point Output” on page 1-19
“Configuring Blocks with Fixed-Point Parameters” on page 1-29

“Passing Fixed-Point Data Between Simulink Models and the MATLAB
Software” on page 1-31

“Automatic Data Typing Tools” on page 1-35

“Code Generation Capabilities” on page 1-36

Configuring Blocks with Fixed-Point Output

You can create a fixed-point model by configuring Simulink blocks to output
fixed-point signals. Simulink blocks that support fixed-point output provide
parameters that allow you to specify whether a block should output fixed-point
signals and, if so, the size, scaling, and other attributes of the fixed-point
output. These parameters typically appear on the Signal Attributes pane
of the block’s parameter dialog box.

1-19

1 Getting Started

1-20

.- o)

Function Block Parameters: Gain @
Gain

Element-wise gain (y = K.*u) or matrix gain (y = K¥u or y = u®K).

Main Signal Attributes Farameter Attributes |

Output minimum: Output maximum:
[(1
Output data type: Inherit: Inherit via internal rule -

[Lock output data type setting against changes by the fixed-paint toals

Integer rounding mode: [Flnor ']

["] saturate on integer overflow

,} [0K ” Cancel H Help Apply

The following sections explain how to use these parameters to configure a
block for fixed-point output.
® “Specifying the Output Data Type and Scaling” on page 1-21

® “Specifying Fixed-Point Data Types with the Data Type Assistant” on page
1-23

¢ “Rounding” on page 1-26

® “Overflow Handling” on page 1-27

¢ “Locking the Output Data Type Setting” on page 1-27

e “Real-World Values Versus Stored Integer Values” on page 1-27

Simulink® Fixed Point™ Software Features

Specifying the Output Data Type and Scaling

Many Simulink blocks allow you to specify an output data type and scaling
using a parameter that appears on the block dialog box. This parameter
(typically named Output data type) provides a pull-down menu that lists
the data types a particular block supports. In general, you can specify the
output data type as a rule that inherits a data type, a built-in data type, an
expression that evaluates to a data type, or a Simulink data type object. For
more information, see “Specify Block Output Data Types”.

The Simulink Fixed Point software enables you to configure Simulink blocks
with:

¢ Fixed-point data types

Fixed-point data types are characterized by their word size in bits and by
their binary point—the means by which fixed-point values are scaled. See
“Fixed-Point Numbers” on page 2-3 for more information.

¢ Floating-point data types

Floating-point data types are characterized by their sign bit, fraction
(mantissa) field, and exponent field. See “Floating-Point Numbers” on page
2-25 for more information.

To configure blocks with Simulink Fixed Point data types, specify the data
type parameter on a block dialog box as an expression that evaluates to a
data type. Alternatively, you can use an assistant that simplifies the task of
entering data type expressions (see “Specifying Fixed-Point Data Types with
the Data Type Assistant” on page 1-23). The sections that follow describe
varieties of fixed-point and floating-point data types, and the corresponding
functions that you use to specify them.

Integers. You can specify unsigned and signed integers with the uint and
sint functions, respectively.

For example, to configure a 16-bit unsigned integer via the block dialog box,
specify the Output data type parameter as uint(16). To configure a 16-bit
signed integer, specify the Output data type parameter as sint(16).

For integer data types, the default binary point is assumed to lie to the right
of all bits.

1-21

1 Getting Started

1-22

Fractional Numbers. You can specify unsigned and signed fractional
numbers with the ufrac and sfrac functions, respectively.

For example, to configure the output as a 16-bit unsigned fractional number
via the block dialog box, specify the Output data type parameter to be
ufrac(16). To configure a 16-bit signed fractional number, specify Output
data type to be sfrac(16).

Fractional numbers are distinguished from integers by their default scaling.
Whereas signed and unsigned integer data types have a default binary point
to the right of all bits, unsigned fractional data types have a default binary
point to the left of all bits, while signed fractional data types have a default
binary point to the right of the sign bit.

Both unsigned and signed fractional data types support guard bits, which
act to guard against overflow. For example, sfrac(16,4) specifies a 16-bit
signed fractional number with 4 guard bits. The guard bits lie to the left
of the default binary point.

Generalized Fixed-Point Numbers. You can specify unsigned and
signed generalized fixed-point numbers with the ufix and sfix functions,
respectively.

For example, to configure the output as a 16-bit unsigned generalized
fixed-point number via the block dialog box, specify the Output data
type parameter to be ufix(16). To configure a 16-bit signed generalized
fixed-point number, specify Output data type to be sfix(16).

Generalized fixed-point numbers are distinguished from integers and
fractionals by the absence of a default scaling. For these data types, a block
typically inherits its scaling from another block.

Note Alternatively, you can use the fixdt function to create integer,
fractional, and generalized fixed-point objects. The fixdt function also allows
you to specify scaling for fixed-point data types.

Simulink® Fixed Point™ Software Features

Floating-Point Numbers. The Simulink Fixed Point software supports
single-precision and double-precision floating-point numbers as defined by
the IEEE® Standard 754-1985 for Binary Floating-Point Arithmetic. You can
specify floating-point numbers with the Simulink float function.

For example, to configure the output as a single-precision floating-point
number via the block dialog box, specify the Output data type parameter
as float('single'). To configure a double-precision floating-point number,
specify Output data type as float('double').

Specifying Fixed-Point Data Types with the Data Type Assistant

The Data Type Assistant is an interactive graphical tool that simplifies

the task of specifying data types for Simulink blocks and data objects. The
assistant appears on block and object dialog boxes, adjacent to parameters
that provide data type control, such as the OQutput data type parameter. For
more information about accessing and interacting with the assistant, see
“Specify Data Types Using Data Type Assistant”.

You can use the Data Type Assistant to specify a fixed-point data type.
When you select Fixed point in the Mode field, the assistant displays fields
for describing additional attributes of a fixed-point data type, as shown in
this example:

1-23

1 Getting Started

1-24

Source Block Parameters: Constant @
Constant

Output the constant specified by the 'Constant value' parameter. If 'Constant value' is a vector and
'Interpret vector parameters as 1-D' is on, treat the constant value as a 1-D array. Otherwise, output a
matrix with the same dimensions as the constant value.

- Signal Attributes

Output minimum: Output maximum:

a [

Output data type: fixdt(1,16,2°0,0) -

Data Type Assistant

Mode: |Fixed point ¥ | Signedness: Word length: 16
Scaling: Slope and bias v | Slope: 270

Bias: 0

Data type override: llnherit '] ’Calculate Best-Precision Scaling

Fixed-point details

[T] Lock output data type setting against changes by the fixed-point tools

_} [oK H Cancel H Help H Apply

You can set the following fixed-point attributes:

Signedness. Select whether you want the fixed-point data to be Signed
or Unsigned. Signed data can represent positive and negative quantities.
Unsigned data represents positive values only.

Word length. Specify the size (in bits) of the word that will hold the
quantized integer. Large word sizes represent large quantities with greater
precision than small word sizes. Fixed-point word sizes up to 128 bits are
supported for simulation.

Scaling. Specify the method for scaling your fixed-point data to avoid
overflow conditions and minimize quantization errors. You can select the
following scaling modes:

Simulink® Fixed Point™ Software Features

Scaling Description
Mode
Binary If you select this mode, the assistant displays the Fraction length field,
point specifying the binary point location.
Binary points can be positive or negative integers. A positive integer moves the
binary point left of the rightmost bit by that amount. For example, an entry of 2
sets the binary point in front of the second bit from the right. A negative integer
moves the binary point further right of the rightmost bit by that amount, as
in this example:
| 16 bit binary word |
binary paint [fractian kngth = E]J
binary paint [fraction kngth = -2)
See “Binary-Point-Only Scaling” on page 2-6 for more information.
Slope and If you select this mode, the assistant displays fields for entering the Slope
bias and Bias.
¢ Slope can be any positive real number.
¢ Bias can be any real number.
See “Slope and Bias Scaling” on page 2-7 for more information.
Best If you select this mode, the block scales a constant vector or matrix such that
precision the precision of its elements is maximized. This mode is available only for

particular blocks.

See “Constant Scaling for Best Precision” on page 2-13 for more information.

1-25

1 Getting Started

1-26

Calculate Best-Precision Scaling. The Simulink Fixed Point software
can automatically calculate “best-precision” values for both Binary point
and Slope and bias scaling, based on the values that you specify for other
parameters on the dialog box. To calculate best-precision-scaling values
automatically, enter values for the block’s Output minimum and Output
maximum parameters. Afterward, click the Calculate Best-Precision
Scaling button in the assistant.

Rounding

You specify how fixed-point numbers are rounded with the Integer rounding
mode parameter. The following rounding modes are supported:

® Ceiling — This mode rounds toward positive infinity and is equivalent to
the MATLAB ceil function.

® Convergent — This mode rounds toward the nearest representable
number, with ties rounding to the nearest even integer. Convergent
rounding is equivalent to the Fixed-Point Toolbox convergent function.

® Floor — This mode rounds toward negative infinity and is equivalent to
the MATLAB floor function.

® Nearest — This mode rounds toward the nearest representable number,
with the exact midpoint rounded toward positive infinity. Rounding toward
nearest is equivalent to the Fixed-Point Toolbox nearest function.

® Round — This mode rounds to the nearest representable number, with ties
for positive numbers rounding in the direction of positive infinity and ties
for negative numbers rounding in the direction of negative infinity. This
mode is equivalent to the Fixed-Point Toolbox round function.

® Simplest — This mode automatically chooses between round toward floor
and round toward zero to produce generated code that is as efficient as
possible.

® Zero — This mode rounds toward zero and is equivalent to the MATLAB
fix function.

For more information about each of these rounding modes, see “Rounding”
on page 3-4.

Simulink® Fixed Point™ Software Features

Overflow Handling

You control how overflow conditions are handled for fixed-point operations
with the Saturate on integer overflow check box.

If this box is selected, overflows saturate to either the maximum or minimum
value represented by the data type. For example, an overflow associated with
a signed 8-bit integer can saturate to -128 or 127.

If this box is not selected, overflows wrap to the appropriate value that is
representable by the data type. For example, the number 130 does not fit in a
signed 8-bit integer, and would wrap to -126.

Locking the Output Data Type Setting

If the output data type is a generalized fixed-point number, you have the
option of locking its output data type setting by selecting the Lock output
data type setting against changes by the fixed-point tools check box.

When locked, the Fixed-Point Tool and automatic scaling script autofixexp
do not change the output data type setting. For more information, see
“Automatic Data Typing Tools” on page 1-35. Otherwise, the Fixed-Point Tool
and autofixexp script are free to adjust the output data type setting.

Real-World Values Versus Stored Integer Values

You can configure Data Type Conversion blocks to treat signals as real-world
values or as stored integers with the Input and output to have equal
parameter.

1-27

1 Getting Started

1-28

i

Function Block Parameters: Data Type Conversion @
Data Type Conversion

Convert the input to the data type and scaling of the output.

The conversion has two possible goals. One goal is to have the Real World
Values of the input and the output be equal. The other goal is to have the
Stored Integer Values of the input and the output be equal. Overflows and
guantization errors can prevent the goal from being fully achieved.

FParameters
Output minimum: Output maximum:

W [

Output data type: Inherit: Inherit via back propagation - > |

["| Lock output data type setting against changes by the fixed-paint toals

Input and output to have equal: lReaI World Value (RWWV) *J

Integer rounding mode: IFIDDr *J

["] saturate on integer overflow
Sample time (-1 for inherited):

-1

The possible values are Real World Value (RWV) and Stored Integer
(SI).

In terms of the variables defined in “Scaling” on page 2-5, the real-world
value is given by V and the stored integer value is given by @. You may want
to treat numbers as stored integer values if you are modeling hardware that
produces integers as output.

Simulink® Fixed Point™ Software Features

Configuring Blocks with Fixed-Point Parameters

Certain Simulink blocks allow you to specify fixed-point numbers as the
values of parameters used to compute the block’s output, e.g., the Gain
parameter of a Gain block.

Note S-functions and the Stateflow Chart block do not support fixed-point
parameters.

You can specify a fixed-point parameter value either directly by setting the
value of the parameter to an expression that evaluates to a fi object, or
indirectly by setting the value of the parameter to an expression that refers to
a fixed-point Simulink.Parameter object.

® “Specifying Fixed-Point Values Directly” on page 1-29
® “Specifying Fixed-Point Values Via Parameter Objects” on page 1-30

Note Simulating or performing data type override on a model with fi objects
requires a Fixed-Point Toolbox software license. See “Sharing Fixed-Point
Models” on page 1-3 for more information.

Specifying Fixed-Point Values Directly

You can specify fixed-point values for block parameters using fi objects. In
the block dialog’s parameter field, simply enter the name of a fi object or an
expression that includes the fi constructor function.

For example, entering the expression
fi(3.3,1,8,3)
as the Constant value parameter for the Constant block specifies a signed

fixed-point value of 3.3, with a word length of 8 bits and a fraction length
of 3 bits.

1-29

1 Getting Started

1-30

P ex_fixpt_dt_fi_object [E=8 SR (F>T
File Edit View Display Diagram Simulation Analysis Code Tools Help
-8 & @2 4P » D ~ |

| ex_finpt_dt_fi_object |

® || Paex_fixpt_dt_fi_ohject -
&)
IE' fi(3.3,1,8.3) pFiod_Frd » 3.25)
== Constant Display
»
Ready 100% T=0.000 FixedStepDiscrete

Specifying Fixed-Point Values Via Parameter Obijects

You can specify fixed-point parameter objects for block parameters using
instances of the Simulink.Parameter class. To create a fixed-point parameter
object, either specify a fi object as the parameter object’s Value property, or
specify the relevant fixed-point data type for the parameter object’s DataType
property.

For example, suppose you want to create a fixed-point constant in your model.
You could do this using a fixed-point parameter object and a Constant block
as follows:

1 Enter the following command at the MATLAB prompt to create an instance
of the Simulink.Parameter class:

my_fixpt_param = Simulink.Parameter

2 Specify either the name of a i object or an expression that includes the fi
constructor function as the parameter object’s Value property:

my_fixpt_param.Value = fi(3.3,true,8,3)

Simulink® Fixed Point™ Software Features

Alternatively, you can set the parameter object’s Value and DataType
properties separately. In this case, specify the relevant fixed-point data
type using a Simulink.AliasType object, a Simulink.NumericType object,
or a fixdt expression. For example, the following commands independently
set the parameter object’s value and data type, using a fixdt expression as
the DataType string:

my_fixpt_param.Value = 3.3;
my_fixpt_param.DataType = 'fixdt(true,8,2"-3,0)"

3 Specify the parameter object as the value of a block’s parameter. For
example, my fixpt_param specifies the Constant value parameter for the
Constant block in the following model:

'Pﬁ ex_fixpt_dt_param_object EI@

File Edit Wiew Display Diagram Simulation Analysis Code Tools Help

-8 a2 & 1R XC A NN RY- R

| ex_fixpt_dt_param_object |

® |[Pa|ex fixpt_dt_param_object -
®

€3 my_fixpt_param plod_Erd > 2.5

= Constant Display

Ready 100% T=0.000 FixedStepDiscrete

Consequently, the Constant block outputs a signed fixed-point value of 3.3,
with a word length of 8 bits and a fraction length of 3 bits.

Passing Fixed-Point Data Between Simulink Models
and the MATLAB Software

You can read fixed-point data from the MATLAB software into your Simulink
models, and there are a number of ways in which you can log fixed-point
information from your models and simulations to the workspace.

1-31

1 Getting Started

1-32

Reading Fixed-Point Data from the Workspace

You can read fixed-point data from the MATLAB workspace into a Simulink
model via the From Workspace block. To do so, the data must be in structure
format with a Fixed-Point Toolbox fi object in the values field. In array
format, the From Workspace block only accepts real, double-precision data.

To read in fi data, the Interpolate data parameter of the From Workspace
block must not be selected, and the Form output after final data value by
parameter must be set to anything other than Extrapolation.

Writing Fixed-Point Data to the Workspace

You can write fixed-point output from a model to the MATLAB workspace via
the To Workspace block in either array or structure format. Fixed-point data
written by a To Workspace block to the workspace in structure format can be

read back into a Simulink model in structure format by a From Workspace
block.

Note To write fixed-point data to the workspace as a fi object, select the
Log fixed-point data as a fi object check box on the To Workspace block
dialog. Otherwise, fixed-point data is converted to double and written to the
workspace as double.

For example, you can use the following code to create a structure in the
MATLAB workspace with a fi object in the values field. You can then use
the From Workspace block to bring the data into a Simulink model.

a = fi([sin(0:10)"' sin(10:-1:0)"'])

a =
0 -0.5440

0.8415 0.4121
0.9093 0.9893
0.1411 0.6570
-0.7568 -0.2794
-0.9589 -0.9589

-0.2794 -0.7568

Simulink® Fixed Point™ Software Features

0.6570 0.1411
0.9893 0.9093
0.4121 0.8415
-0.5440 0

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 15
s.signals.values = a

signals: [1x1 struct]

s.signals.dimensions = 2

signals: [1x1 struct]

s.time = [0:10]'

signals: [1x1 struct]
time: [11x1 double]

The From Workspace block in the following model has the fi structure s in
the Data parameter. In the model, the following parameters in the Solver
pane of the Configuration Parameters dialog box have the indicated settings:
e Start time — 0.0

¢ Stop time — 10.0

* Type — Fixed-step

e Solver — Discrete (no continuous states)

Fixed-step size (fundamental sample time) — 1.0

1-33

1 Getting Started

1-34

{‘i ex_fi_gain EI@
File Edit View Display Diagram Simulation Analysis Code Tools Help
]) = 2k ik

-8 = Be @ -= G4 b » (D v @y
ex_fi_gain
® || "alex_fi_gain -
@
£

=fixi6_Ent5 = =iaE_En2s _
== H LLL-“" | simou

From Gai To Waork

VWkspeen in -] space
»
Ready 100% T=0.000 FieedStepDiscrete

The To Workspace block writes the result of the simulation to the MATLAB
workspace as a fi structure.

simout.signals.values
ans =

0 -8.7041
13.4634 6.5938
14.5488 15.8296

2.2578 10.5117
-12.1089 -4.4707
-15.3428 -15.3428

-4.4707 -12.1089
10.5117 2.2578
15.8296 14.5488
6.5938 13.4634
-8.7041 0

Simulink® Fixed Point™ Software Features

Logging Fixed-Point Signals

When fixed-point signals are logged to the MATLAB workspace via signal
logging, they are always logged as Fixed-Point Toolbox fi objects. To enable
signal logging for a signal, select the Log signal data option in the signal’s
Signal Properties dialog box. For more information, refer to “Signal Logging”.

When you log signals from a referenced model or Stateflow chart in your
model, the word lengths of fi objects may be larger than you expect. The word
lengths of fixed-point signals in referenced models and Stateflow charts are
logged as the next larger data storage container size.

Accessing Fixed-Point Block Data During Simulation

Simulink provides an application programming interface (API) that enables
programmatic access to block data, such as block inputs and outputs,
parameters, states, and work vectors, while a simulation is running. You can
use this interface to develop MATLAB programs capable of accessing block
data while a simulation is running or to access the data from the MATLAB
command line. Fixed-point signal information is returned to you via this API
as i objects. For more information about the API, refer to “Access Block Data
During Simulation”.

Automatic Data Typing Tools

In addition to the features described in the previous sections, the Simulink
Fixed Point software provides you with two automatic data typing tools:

* Fixed-Point Advisor

¢ Fixed-Point Tool

Fixed-Point Advisor

The Fixed-Point Advisor provides a set of tasks to facilitate converting a
floating-point model or subsystem to an equivalent fixed-point representation.

Note After conversion, use the Fixed-Point Tool to refine the model
fixed-point data types.

1-35

1 Getting Started

1-36

For more information, see “Fixed-Point Advisor” on page 12-2.

To learn how to use the Fixed-Point Advisor, see “Preparation for Fixed-Point
Conversion” on page 5-2.

Fixed-Point Tool

The Fixed-Point Tool provides a graphical user interface that allows you

to configure the parameters associated with automatic data typing. The

tool collects range data for model objects, either from design minimum and
maximum values that objects specify explicitly, from logged minimum and
maximum values that occur during simulation or from derived minimum and
maximum data. It uses this information to propose fixed-point data types
that cover the range with maximum precision. For more information, see
“Overview of the Fixed-Point Tool” on page 6-2.

Using the tool, you can view the simulation results and scaling proposals for a
model. After reviewing the data type proposals, you can choose whether or
not to apply them to objects in your model.

To learn how to use the Fixed-Point Tool, see “Converting a Model from
Floating- to Fixed-Point Using Simulation Data” on page 5-14.

You can also use the autofixexp script to automatically change the scaling
for each Simulink block that has generalized fixed-point output and does not
have its scaling locked. The script uses the maximum and minimum values
logged during the last simulation run. The scaling is changed such that the
simulation range is covered and the precision is maximized.

Code Generation Capabilities

With the Simulink Coder product, the Simulink Fixed Point software can
generate C code. The code generated from fixed-point blocks uses only integer
types and automatically includes all operations, such as shifts, needed to
account for differences in fixed-point locations.

You can use the generated code on embedded fixed-point processors or
rapid prototyping systems even if they contain a floating-point processor.
The code is structured so that key operations can be readily replaced by
optimized target-specific libraries that you supply. You can also use Target

Simulink® Fixed Point™ Software Features

Language Compiler to customize the generated code. For more information,
see “Fixed-Point Code Generation”.

With HDL Coder, you can generate portable, synthesizable VHDL and Verilog
code from Simulink models and Stateflow charts.

1-37

1 Getting Started

Cast from Doubles to Fixed Point

In this section...

“About This Example” on page 1-38
“Block Descriptions” on page 1-39

“Simulations” on page 1-40

About This Example

The purpose of this example is to show you how to simulate a continuous
real-world doubles signal using a generalized fixed-point data type. Although
simple in design, the model gives you an opportunity to explore many of the
important features of the Simulink Fixed Point software, including

® Data types
® Scaling
* Rounding

® Logging minimum and maximum simulation values to the workspace

¢ Overflow handling

This example uses the fxpdemo_dbl2fix model. Open the model:

fxpdemo_dbl2fix

1-38

Cast from Doubles to Fixed Point

P4 fepdemo_dbl2fix =] =)
File Edit View Display Diagram Simulation Analysis Code Tools Help
] — P Vi
-8 a2 @ -2 4o P » 7 e T
frpdemo_dbl2fix
® ||Pa frpdermo_dbl2fix hd
i . . :
Double to Fixed-Point Conversion
& ooon
= oo -‘—“J-I-L - Convert #| double » M .]
Signal Zero-Order Dbk to-FiPt FoPt-to-Dbl
Generator Haold " i M Scope

Copyright 1880- 2008 The MathW orks, Inc

»

The sections that follow describe the model and its simulation results.

Block Descriptions
In this example, you configure the Signal Generator block to output a sine

wave signal with an amplitude defined on the interval [-5 5]. The Signal
Generator block always outputs double-precision numbers.

The Data Type Conversion (Dbl-to-FixPt) block converts the double-precision
numbers from the Signal Generator block into one of the Simulink Fixed
Point data types. For simplicity, the size of the output signal is 5 bits in this
example.

The Data Type Conversion (FixPt-to-Dbl) block converts one of the Simulink
Fixed Point data types into a Simulink data type. In this example, it outputs
double-precision numbers.

1-39

1 Getting Started

Simulations

The following sections describe how to simulate the model using
binary-point-only scaling and [Slope Bias] scaling.

Binary-Point-Only Scaling

When using binary-point-only scaling, your goal is to find the optimal
power-of-two exponent E, as defined in “Scaling” on page 2-5. For this scaling
mode, the fractional slope F'is 1 and there is no bias.

To run the simulation:
1 Configure the Signal Generator block to output a sine wave signal with an

amplitude defined on the interval [-5 5].

a Double-click the Signal Generator block to open the Block Parameters
dialog.

b Set the Wave form parameter to sine.
¢ Set the Amplitude parameter to 5.
d Click OK.

2 Configure the Data Type Conversion (Dbl-to-FixPt) block.
a Double-click the Dbl-to-FixPt block to open the Block Parameters
dialog.

b Verify that the Output data type parameter is fixdt(1,5,2).
fixdt(1,5,2) specifies a 5-bit, signed, fixed-point number with scaling
2~ -2, which puts the binary point two places to the left of the rightmost
bit. Hence the maximum value is 011.11 = 3.75, a minimum value of
100.00 = -4.00, and the precision is (1/2)% = 0.25.

¢ Verify that the Integer rounding mode parameter is Floor. Floor
rounds the fixed-point result toward negative infinity.

d Select the Saturate on integer overflow checkbox to prevent the block
from wrapping on overflow.

e Click OK.

3 Select Simulation > Run in your Simulink model window.

1-40

Cast from Doubles to Fixed Point

The Scope displays the real-world and fixed-point simulation results.

nScope EI@
20|l d HN% 0% >

|deal [Magenta] Fixed-Point [vel

The simulation shows the quantization effects of fixed-point arithmetic. Using
a 5-bit word with a precision of (1/2)? = 0.25 produces a discretized output that
does not span the full range of the input signal.

If you want to span the complete range of the input signal with 5 bits using
binary-point-only scaling, then your only option is to sacrifice precision.
Hence, the output scaling is 2* -1, which puts the binary point one place to
the left of the rightmost bit. This scaling gives a maximum value of 0111.1 =
7.5, a minimum value of 1000.0 = -8.0, and a precision of (1/2)! = 0.5.

To simulate using a precision of 0.5, set the Output data type parameter of

the Data Type Conversion (Dbl-to-FixPt) block to fixdt(1,5,1) and rerun
the simulation.

1-41

1 Getting Started

[Slope Bias] Scaling

When using [Slope Bias] scaling, your goal is to find the optimal fractional
slope F' and fixed power-of-two exponent E, as defined in “Scaling” on page
2-5. There is no bias for this example because the sine wave is on the interval
[-5 5].

To arrive at a value for the slope, you begin by assuming a fixed power-of-two
exponent of -2. To find the fractional slope, you divide the maximum value of
the sine wave by the maximum value of the scaled 5-bit number. The result
1s 5.00/3.75 = 1.3333. The slope (and precision) is 1.3333.(0.25) = 0.3333.
You specify the [Slope Bias] scaling as [0.3333 0] by entering the expression
fixdt(1,5,0.3333,0) as the value of the Output data type parameter.

You could also specify a fixed power-of-two exponent of -1 and a corresponding
fractional slope of 0.6667. The resulting slope is the same since E is reduced
by 1 bit but F'is increased by 1 bit. The Simulink Fixed Point software would
automatically store F as 1.3332 and E as -2 because of the normalization
condition of 1 < F'< 2,

To run the simulation:
1 Configure the Signal Generator block to output a sine wave signal with an

amplitude defined on the interval [-5 5].

a Double-click the Signal Generator block to open the Block Parameters
dialog.

b Set the Wave form parameter to sine.
¢ Set the Amplitude parameter to 5.
d Click OK.

2 Configure the Data Type Conversion (Dbl-to-FixPt) block.

a Double-click the Dbl-to-FixPt block to open the Block Parameters
dialog.

b Set the Output data type parameter to fixdt(1,5,0.3333,0) to
specify [Slope Bias] scaling as [0.3333 0].

¢ Verify that the Integer rounding mode parameter is Floor. Floor
rounds the fixed-point result toward negative infinity.

1-42

Cast from Doubles to Fixed Point

d Select the Saturate on integer overflow checkbox to prevent the block
from wrapping on overflow.

e Click OK.
3 Select Simulation > Run in your Simulink model window.

The Scope displays the real-world and fixed-point simulation results.

nScope EI@
G0« 0%% B as -

|deal [Magenta] Fied-Point [vellow)

You do not need to find the slope using this method. You need only the range
of the data you are simulating and the size of the fixed-point word used in the

simulation. You can achieve reasonable simulation results by selecting your
scaling based on the formula

(max _value —min _value)

218 1

2

where

1-43

1 Getting Started

1-44

®* max_value 1s the maximum value to be simulated.
®* min_value is the minimum value to be simulated.
® ws is the word size in bits.

e 2ws .] is the largest value of a word with size ws.

For this example, the formula produces a slope of 0.32258.

Data Types and Scaling

e “Data Types and Scaling in Digital Hardware” on page 2-2
¢ “Fixed-Point Numbers” on page 2-3
¢ “Floating-Point Numbers” on page 2-25

2 Data Types and Scaling

Data Types and Scaling in Digital Hardware

2-2

In digital hardware, numbers are stored in binary words. A binary word
is a fixed-length sequence of binary digits (1’s and 0’s). The way in which
hardware components or software functions interpret this sequence of 1’s
and 0’s is described by a data type.

Binary numbers are represented as either fixed-point or floating-point data
types. A fixed-point data type is characterized by the word size in bits, the
binary point, and whether it is signed or unsigned. The binary point is the
means by which fixed-point values are scaled. With the Simulink Fixed Point
software, fixed-point data types can be integers, fractionals, or generalized
fixed-point numbers. The main difference between these data types is their
default binary point.

Floating-point data types are characterized by a sign bit, a fraction (or
mantissa) field, and an exponent field. The blockset adheres to the IEEE
Standard 754-1985 for Binary Floating-Point Arithmetic (referred to simply
as the IEEE Standard 754 throughout this guide) and supports singles,
doubles, and a nonstandard IEEE-style floating-point data type.

When choosing a data type, you must consider these factors:

¢ The numerical range of the result

The precision required of the result

The associated quantization error (i.e., the rounding mode)

The method for dealing with exceptional arithmetic conditions

These choices depend on your specific application, the computer architecture
used, and the cost of development, among others.

With the Simulink Fixed Point software, you can explore the relationship
between data types, range, precision, and quantization error in the modeling
of dynamic digital systems. With the Simulink Coder product, you can
generate production code based on that model. With HDL Coder, you can
generate portable, synthesizable VHDL and Verilog code from Simulink
models and Stateflow charts.

Fixed-Point Numbers

Fixed-Point Numbers

In this section...

“Fixed-Point Numbers” on page 2-3

“Signed Fixed-Point Numbers” on page 2-4

“Binary Point Interpretation” on page 2-4

“Scaling” on page 2-5

“Quantization” on page 2-8

“Range and Precision” on page 2-10

“Constant Scaling for Best Precision” on page 2-13
“Fixed-Point Data Type and Scaling Notation” on page 2-16
“Scaled Doubles” on page 2-18

“Use Scaled Doubles to Avoid Precision Loss” on page 2-20

“Display Data Types for Ports in Your Model” on page 2-23

Fixed-Point Numbers

Fixed-point numbers and their data types are characterized by their word
size in bits, binary point, and whether they are signed or unsigned. The
Simulink Fixed Point software supports integers, fixed-point numbers. The
main difference among these data types is their binary point.

Note Fixed-point numbers can have a word size up to 128 bits.

A common representation of a binary fixed-point number , either signed or
unsigned, is shown in the following figure.

| Ibws—l | bws—?. | | bEl bd_- I bE | b?. | I'i:':l | bO |
MSB ’[LSB
Binary point

2 Data Types and Scaling

2-4

where

® b, are the binary digits (bits)

® ws is the word length in bits

® The most significant bit (MSB) is the leftmost bit, and is represented by
location b, 1

¢ The least significant bit (LSB) is the rightmost bit, and is represented by
location b,

¢ The binary point is shown four places to the left of the LSB

Signed Fixed-Point Numbers

Computer hardware typically represents the negation of a binary fixed-point
number in three different ways: sign/magnitude, one’s complement, and two’s
complement. Two’s complement is the preferred representation of signed
fixed-point numbers and supported by the Simulink Fixed Point software.

Negation using two’s complement consists of a bit inversion (translation into
one’s complement) followed by the addition of a one. For example, the two’s
complement of 000101 is 111011.

Whether a fixed-point value is signed or unsigned is usually not encoded
explicitly within the binary word; that is, there is no sign bit. Instead, the
sign information is implicitly defined within the computer architecture.

Binary Point Interpretation

The binary point is the means by which fixed-point numbers are scaled. It is
usually the software that determines the binary point. When performing basic
math functions such as addition or subtraction, the hardware uses the same
logic circuits regardless of the value of the scale factor. In essence, the logic
circuits have no knowledge of a scale factor. They are performing signed or
unsigned fixed-point binary algebra as if the binary point is to the right of b,

Simulink Fixed Point supports the general binary point scaling V =Q *2" E..
See “Binary-Point-Only Scaling” on page 2-6. The software does not restrict
the value of exponent E based on the word length of the stored integer Q.

Fixed-Point Numbers

Because E is equal to -FractionLength, restricting the binary point to
being contiguous with the fraction is unnecessary; the fraction length can be
negative or greater than the word length.

For example, a word consisting of three unsigned bits is usually represented
in scientific notation in one of these four ways.

bbb. = bbb.x 2°

bbb =bbb.x27!
b.bb = bbb.x 272
bbb =bbb.x273

If the exponent were greater than 0 or less than -3, then the representation
would involve lots of zeros.

bbb00000. = bbb, x 2°
bbb00. = bbb. x 22

.00bbb = bbb.x27°
.00000bbb = bbb.x 278

These extra zeros never change to ones, however, so they don’t show up in
the hardware. Furthermore, unlike floating-point exponents, a fixed-point
exponent never shows up in the hardware, so fixed-point exponents are not
limited by a finite number of bits.

Scaling

The dynamic range of fixed-point numbers is much less than floating-point
numbers with equivalent word sizes. To avoid overflow conditions and
minimize quantization errors, fixed-point numbers must be scaled.

With the Simulink Fixed Point software, you can select a fixed-point data type
whose scaling is defined by its binary point, or you can select an arbitrary
linear scaling that suits your needs. This section presents the scaling choices
available for fixed-point data types.

2-5

2 Data Types and Scaling

2-6

You can represent a fixed-point number by a general slope and bias encoding
scheme

V=-V-=-8Q+B,
where
¢ Vis an arbitrarily precise real-world value.

® V is the approximate real-world value.

® (@, the stored value, is an integer that encodes V.

o S=F2F isthe slope.
® B is the bias.

The slope is partitioned into two components:

o 2F specifies the binary point. E is the fixed power-of-two exponent.

® F'is the slope adjustment factor. It is normalized such that 1< F < 2.

Note S and B are constants and do not show up in the computer hardware
directly. Only the quantization value @ is stored in computer memory.

The scaling modes available to you within this encoding scheme are described
in the sections that follow. For detailed information about how the supported
scaling modes effect fixed-point operations, refer to “Recommendations for
Arithmetic and Scaling” on page 3-33.

Binary-Point-Only Scaling

Binary-point-only or power-of-two scaling involves moving the binary point
within the fixed-point word. The advantage of this scaling mode is to minimize
the number of processor arithmetic operations.

Fixed-Point Numbers

With binary-point-only scaling, the components of the general slope and bias
formula have the following values:

e F=1

o S=F2F _oF

e B=0

The scaling of a quantized real-world number is defined by the slope S, which
1s restricted to a power of two. The negative of the power-of-two exponent is
called the fraction length. The fraction length is the number of bits to the

right of the binary point. For Binary-Point-Only scaling, specify fixed-point
data types as

e gsigned types — fixdt (1, WordLength, FractionLength)
® unsigned types — fixdt (0, WordLength, FractionLength)

Integers are a special case of fixed-point data types. Integers have a trivial
scaling with slope 1 and bias 0, or equivalently with fraction length 0. Specify

integers as

® signed integer — fixdt (1, WordLength, 0)
® unsigned integer — fixdt (0, WordLength, 0)

Slope and Bias Scaling
When you scale by slope and bias, the slope S and bias B of the quantized

real-world number can take on any value. The slope must be a positive
number. Using slope and bias, specify fixed-point data types as

e fixdt(Signed, WordLength, Slope, Bias)

Unspecified Scaling

Specify fixed-point data types with an unspecified scaling as

e fixdt(Signed, WordLength)

2-7

2 Data Types and Scaling

2-8

Simulink signals, parameters, and states must never have unspecified
scaling. When scaling 1s unspecified, you must use some other mechanism
such as automatic best precision scaling to determine the scaling that the
Simulink software uses.

Quantization

The quantization @ of a real-world value V is represented by a weighted sum
of bits. Within the context of the general slope and bias encoding scheme, the
value of an unsigned fixed-point quantity is given by

~ ws-1 .
V=8| 52 |+B,

i=0

while the value of a signed fixed-point quantity is given by

w
1=0

~ ~ ~ el ws—2 i
V=8.bus 127+ Y ;2" [+B,

where
® b, are binary digits, with b, =1,0, for i =0,1,...,ws -1
® The word size in bits is given by ws, with ws =1, 2, 3,..., 128.

e Sisgiven by F = oF , where the scaling is unrestricted because the binary
point does not have to be contiguous with the word.

b; are called bit multipliers and 2! are called the weights.

Fixed-Point Format

Formats for 8-bit signed and unsigned fixed-point values are shown in the
following figure.

Fixed-Point Numbers

1] 0 1 1 0 1 0 1 Unsigned data type

1 o] 1|1 |0o 1|01 | Signeddatatype

Note that you cannot discern whether these numbers are signed or unsigned
data types merely by inspection since this information is not explicitly
encoded within the word.

The binary number 0011.0101 yields the same value for the unsigned and
two’s complement representation because the MSB = 0. Setting B = 0 and
using the appropriate weights, bit multipliers, and scaling, the value is

i=0

V=(r2F)Q=2F {wilbﬂ‘w

=274 (0x27 +0x2% +1x2° +1x2* +0x2% +1x2% + 0x2" +1x2°)
=3.3125.

Conversely, the binary number 1011.0101 yields different values for the
unsigned and two’s complement representation since the MSB = 1.

Setting B = 0 and using the appropriate weights, bit multipliers, and scaling,
the unsigned value is

V- (F2¥)q@=2F {wilbi?]

=0
=2—4(1><27 +0x2% +1x2% +1x2% +0x23 +1x22 + 0x 2! +1><2°)
-11.3125,

while the two’s complement value is

2-9

2 Data Types and Scaling

~ ws—2 .
V=(F2F)Q =2 b, 27+ Y 52
=0
=2—4(—1><27+0><26+1><25+1><24+0><23+1x22+0><21+1><20)

=—4.6875.

Range and Precision

The range of a number gives the limits of the representation, while

the precision gives the distance between successive numbers in the
representation. The range and precision of a fixed-point number depend on
the length of the word and the scaling.

Range
The following figure illustrates the range of representable numbers for an
unsigned fixed-point number of size ws, scaling S, and bias B.

B S _1)+ B

posgitive numbers

The following figure illustrates the range of representable numbers for a
two’s complement fixed-point number of size ws, scaling S, and bias B where
the values of ws, scaling S, and bias B allow for both negative and positive
numbers.

SN+ B 0 S -1 11+ B

l :
I= R

necative numbers positive numbers

For both the signed and unsigned fixed-point numbers of any data type, the
number of different bit patterns is 2%,

2-10

Fixed-Point Numbers

For example, if the fixed-point data type is an integer with scaling defined

as S=1 and B = 0, then the maximum unsigned value is 251 | because
zero must be represented. In two’s complement, negative numbers must

be represented as well as zero, so the maximum value is ows=1 1.
Additionally, since there is only one representation for zero, there must be
an unequal number of positive and negative numbers. This means there is a

representation for 251 but not for 2¢51.

Precision

The precision of a data type is given by the slope. In this usage, precision
means the difference between neighboring representable values.

Fixed-Point Data Type Parameters

The low limit, high limit, and default binary-point-only scaling for the
supported fixed-point data types discussed in “Binary Point Interpretation”
on page 2-4 are given in the following table. See “Precision” on page 3-3 and
“Range” on page 3-27 for more information.

Fixed-Point Data Type Range and Default Scaling

Default
Scaling
Name Data Type Low Limit High Limit (~Precision)
Unsigned | fixdt(0,ws,0) 0 ws 1
Integer 27 -1
Signed fixdt(1,ws,0) ws—1 ws—1 1
Integer -2 2 -1
Unsigned | fixdt(0,ws,fl) | O B
Binary ((Zws_1 - 1)2_ﬂ 27
Point
Signed fixdt(1,ws,fl) L 3
Binary gt @vst_pof | 27
Point

2-11

2 Data Types and Scaling

2-12

Fixed-Point Data Type Range and Default Scaling (Continued)

Data Type

Low Limit

Default
Scaling

High Limit (~Precision)

Unsigned
Slope
Bias

fixdt(0,ws,s,b)

b

s
s -1 +b

Signed
Slope
Bias

fixdt(1,ws,s,b)

—s(2¥s 4 p

(251 _1)4p

s = Slope, b = Bias, ws = WordLength, fI = FractionLength

Range of an 8-Bit Fixed-Point Data Type — Binary-Point-Only

Scaling

The precisions, range of signed values, and range of unsigned values for an
8-bit generalized fixed-point data type with binary-point-only scaling are
listed in the follow table. Note that the first scaling value (2!) represents a
binary point that is not contiguous with the word.

Range of Signed
Values (Low, Range of Unsigned
Scaling Precision High) Values (Low, High)
20 2.0 -256, 254 0, 510
20 1.0 -128, 127 0, 255
21 0.5 -64, 63.5 0, 127.5
i 0.25 -32, 31.75 0, 63.75
i 0.125 -16, 15.875 0, 31.875
24 0.0625 -8, 7.9375 0, 15.9375
7 0.03125 -4, 3.96875 0, 7.96875
25 0.015625 -2, 1.984375 0, 3.984375

Fixed-Point Numbers

Range of Signed

Values (Low, Range of Unsigned

Scaling Precision High) Values (Low, High)
2 0.0078125 -1, 0.9921875 0, 1.9921875
28 0.00390625 -0.5, 0.49609375 0, 0.99609375

Range of an 8-Bit Fixed-Point Data Type — Slope and Bias

Scaling

The precision and ranges of signed and unsigned values for an 8-bit fixed-point
data type using slope and bias scaling are listed in the following table. The
slope starts at a value of 1.25 with a bias of 1.0 for all slopes. Note that the
slope is the same as the precision.

Range of Signed Range of Unsigned
Bias Slope/Precision | Values (low, high) | Values (low, high)
1 1.25 -159, 159.75 1, 319.75
1 0.625 -79, 80.375 1, 160.375
1 0.3125 -39, 40.6875 1, 80.6875
1 0.15625 -19, 20.84375 1, 40.84375
1 0.078125 -9, 10.921875 1, 20.921875
1 0.0390625 -4, 5.9609375 1, 10.9609375
1 0.01953125 -1.5, 3.48046875 1, 5.98046875
1 0.009765625 -0.25, 2.240234375 1, 3.490234375
1 0.0048828125 0.375, 1.6201171875 1, 2.2451171875

Constant Scaling for Best Precision

The following fixed-point Simulink blocks provide a mode for scaling
parameters whose values are constant vectors or matrices:

* Constant

e Discrete FIR Filter

2-13

2 Data Types and Scaling

2-14

* Gain

® Relay

® Repeating Sequence Stair

This scaling mode is based on binary-point-only scaling. Using this mode, you

can scale a constant vector or matrix such that a common binary point is
found based on the best precision for the largest value in the vector or matrix.

Constant scaling for best precision is available only for fixed-point data types
with unspecified scaling. All other fixed-point data types use their specified
scaling. You can use the Data Type Assistant (see “Specify Data Types
Using Data Type Assistant”) on a block dialog box to enable the best precision
scaling mode.

1 On a block dialog box, click the Show data type assistant button
3
The Data Type Assistant appears.
2 In the Data Type Assistant, and from the Mode list, select Fixed point.

The Data Type Assistant displays additional options associated with
fixed-point data types.

3 From the Scaling list, select Best precision.

Data Type Assistant

Mode: |Fixed point = | Signedness: Signed - | Word length: 16
Scaling: Best precision -
Data type override: |Inherit -

Fixed-point details

Fixed-Point Numbers

To understand how you might use this scaling mode, consider a 3-by-3 matrix
of doubles, M, defined as

3.3333e-003 3.3333e-004 3.3333e-005
3.3333e-002 3.3333e-003 3.3333e-004
3.3333e-001 3.3333e-002 3.3333e-003

Now suppose you specify M as the value of the Gain parameter for a Gain
block. The results of specifying your own scaling versus using the constant
scaling mode are described here:

® Specified Scaling

Suppose the matrix elements are converted to a signed, 10-bit generalized
fixed-point data type with binary-point-only scaling of 2°7 (that is, the
binary point is located seven places to the left of the right most bit). With
this data format, M becomes

0 0 0
3.1250e-002 O 0
3.3594e-001 3.1250e-002 O

Note that many of the matrix elements are zero, and for the nonzero
entries, the scaled values differ from the original values. This is because a
double is converted to a binary word of fixed size and limited precision for
each element. The larger and more precise the conversion data type, the
more closely the scaled values match the original values.

¢ Constant Scaling for Best Precision

If M is scaled based on its largest matrix value, you obtain

2.9297e-003 O 0
3.3203e-002 2.9297e-003 O
3.3301e-001 3.3203e-002 2.9297e-003

Best precision would automatically select the fraction length that
minimizes the quantization error. Even though precision was maximized
for the given word length, quantization errors can still occur. In this
example, a few elements still quantize to zero.

2-15

2 Data Types and Scaling

Fixed-Point Data Type and Scaling Notation

Simulink data type names must be valid MATLAB identifiers with less than
128 characters. The data type name provides information about container
type, number encoding, and scaling.

You can represent a fixed-point number using the fixed-point scaling equation

V~V=SQ+B,

where

e Vis the real-world value.

® V is the approximate real-world value.

o S=F2% isthe slope.

¢ F'is the slope adjustment factor.

¢ FE is the fixed power-of-two exponent.
® (@ is the stored integer.

® Bis the bias.

For more information, see “Scaling” on page 2-5.

The following table provides a key for various symbols that appear in
Simulink products to indicate the data type and scaling of a fixed-point value.

Symbol Description Example

Container Type

ufix Unsigned fixed-point ufix8 is an 8-bit unsigned
data type fixed-point data type

sfix Signed fixed-point data | sfix128 is a 128-bit signed
type fixed-point data type

2-16

Fixed-Point Numbers

Symbol Description Example

fltu Scaled Doubles override | f1tu32 is a scaled doubles
of an unsigned override of ufix32
fixed-point data type
(ufix)

flts Scaled Doubles override | flts64 is a scaled doubles

of a signed fixed-point
data type (sfix)

override of sfix64

Number Encoding

e 107 125e8 equals 125* (107 (8))
n Negative n31 equals -31
p Decimal point 1p5 equals 1.5

p2 equals 0.2

Scaling Encoding

S Slope ufix16_S5 B7 is a 16-bit
unsigned fixed-point data
type with Slope of 5 and
Bias of 7

B Bias ufix16_S5 B7 is a 16-bit
unsigned fixed-point data
type with Slope of 5 and
Bias of 7

E Fixed exponent (27) sfix32_ En31 is a 32-bit

A negative fixed s1gned fl)md;pmnt data type
. with a fraction length of 31
exponent describes
the fraction length
F Slope adjustment factor | ufix16_F1p5_En50

1s a 16-bit unsigned
fixed-point data type with a
SlopeAdjustmentFactor of
1.5 and a FixedExponent
of -50

2-17

2 Data Types and Scaling

2-18

Symbol Description Example
C,c,D, ord Compressed encoding for | No example available. For
Bias backwards compatibility
only.
Note If you pass To i1dentify and replace calls
. . to slDataTypeAndScale,
this string to the P
use the “Check for calls
slDataTypeAndScale »
.) to slDataTypeAndScale
function, it returns a Model Advisor check
valid fixdt data type. ’
Tort Compressed encoding for | No example available. For

Slope

Note If you pass
this string to the

.Jbackwards compatibility
only.

To identify and replace calls
to slDataTypeAndScale,
use the “Check for calls

;;lDataTypeAnd.Sca.le, to slDataTypeAndScale”
it returns a valid fixdt :

Model Advisor check.
data type.

Scaled Doubles

What Are Scaled Doubles?

Scaled doubles are a hybrid between floating-point and fixed-point numbers.
The Simulink Fixed Point software stores them as doubles with the
scaling, sign, and word length information retained. For example, the
storage container for a fixed-point data type sfix16_En14 is int16. The
storage container of the equivalent scaled doubles data type, f1ts16_En14
is floating-point double. For details of the fixed-point scaling notation,

see “Fixed-Point Data Type and Scaling Notation” on page 2-16. The
Simulink Fixed Point software applies the scaling information to the stored
floating-point double to obtain the real-world value. Storing the value in a
double almost always eliminates overflow and precision issues.

Fixed-Point Numbers

What is the Difference between Scaled Double and Double Data
Types?. The storage container for both the scaled double and double data
types 1is floating-point double. Therefore both data type override settings,
Double and Scaled double, provide the range and precision advantages
of floating-point doubles. Scaled doubles retain the information about the
specified data type and scaling, but doubles do not retain this information.

Consider an example where you are storing 0.75001 degrees Celsius in a data
type sfix16_En13. For this data type:

e The slope, S=27"13.

® The bias, B=0.

Using the scaling equation V =V = SQ + B, where V is the real-world value
and @ 1is the stored value.

e B=0.

e V=8Q=2"39=075001.

Because the storage container of the data type sfix16_En13 is 16 bits, the
stored integer @ can only be represented as an integer within these 16 bits, so
the ideal value of @ is quantized to 6144 causing precision loss.

If you override the data type sfix16_En13 with Double, the data type changes
to Double and you lose the information about the scaling. The stored-value
equals the real-world value 0.75001.

If you override the data type sfix16_En13 with Scaled Double, the data type
changes to f1ts16_En13. The scaling is still given by En13 and is identical
to that of the original data type. The only difference is the storage container
used to hold the stored value which is now double so the stored-value is
6144.08192. This example shows one advantage of using scaled doubles: the
virtual elimination of quantization errors.

2-19

2 Data Types and Scaling

2-20

When to Use Scaled Doubles

The Fixed-Point Tool enables you to perform various data type overrides
on fixed-point signals in your simulations. Use scaled doubles to override
the fixed-point data types and scaling using double-precision numbers to
avoid quantization effects. Overriding the fixed-point data types provides a
floating-point benchmark that represents the ideal output.

Scaled doubles are useful for:

® Testing and debugging
® Applying data type overrides to individual subsystems

If you apply a data type override to subsystems in your model rather
than to the whole model, Scaled doubles provide the information that the
fixed-point portions of the model need for consistent data type propagation.

Use Scaled Doubles to Avoid Precision Loss

This example uses the ex_scaled_double model to show how you can avoid
precision loss by overriding the data types in your model with scaled doubles.
For more information about scaled doubles, see “Scaled Doubles” on page 2-18.

Fixed-Point Numbers

About the Model

'P'i ex_scaled_double EI@
File Edit View Display Diagram Simulation Analysis Code Tools Help
Hm [g 253

-8 & @ -2 4P @~ » @@
| ex_scaled_double |

(] ex_scaled_dnuble hd
E3

=5 Bitwise |—|

4.1 i AND »
0xFF
Constant Bitwize Stored Integer Display
Operator
]
Display
o

In this model:

¢ The Constant block output data type is fixdt(1,8,4).

¢ The Bitwise Operator block uses the AND operator and the bit mask OxFF to
pass the input value to the output. Because the Treat mask as parameter
is set to Stored Integer, the block outputs the stored integer value, S, of

its input. The encoding scheme is V = SQ + B, where V is the real-world
value and @ is the stored integer value. For more information, see “Scaling”

on page 2-5.

2-21

2 Data Types and Scaling

Running the Example

1 Open the ex_scaled double model. At the MATLAB command line, enter:

addpath(fullfile(docroot, 'toolbox', 'fixpoint', 'examples'))
ex_scaled_double

2 From the model menu, select Analysis > Fixed-Point Tool.
The Fixed-Point Tool opens.

3 In the Fixed-Point Tool, set the Data type override parameter to Use
local settings and click Apply.

4 From the model menu, select Simulation > Run.

The simulation runs and the Display block displays 4.125 as the output
value of the Constant block. The Stored Integer Display block displays
0100 0010, which is the binary equivalent of the stored integer value.
Precision loss occurs because the output data type, fixdt(1,8,4), cannot
represent the output value 4.1 exactly.

5 In the Fixed-Point Tool, set the Data type override parameter to Scaled
double and the Data type override applies to parameter to A1l
numeric types. Then click Apply and rerun the simulation.

Note You cannot use a Data type override setting of Double because the
Bitwise Operator block does not support floating-point data types.

The simulation runs and this time the Display block correctly displays 4.1
as the output value of the Constant block. The Stored Integer Display
block displays 65, which is the binary equivalent of the stored integer
value. Because the model uses scaled doubles to override the data type
fixdt(1,8,4), the compiled output data type changes to f1ts8 En4, which
is the scaled doubles equivalent of fixdt(1,8,4). No precision loss occurs
because the scaled doubles retain the information about the specified data
type and scaling, and they use a double to hold the stored value.

2-22

Fixed-Point Numbers

Display Data Types for Ports in Your Model

To display the data types for the ports in your model.

1 From the Simulink Display menu, select Signals and Ports, and then
select Port Data Types.

The port display for fixed-point signals consists of three parts: the data
type, the number of bits, and the scaling. These three parts reflect the block
Output data type parameter value or the data type and scaling that is

inherited from the driving block or through back propagation.

The following model displays its port data types.

4 o data_type_disp [E=1 B>
File Edit VWiew Display Diagram Simulation Analysis Code Teols
] = el i 1L
-8 a EH-E AOP @ 00 - @ -
ex_data_type_disp
® || Pa|ex_data_type_disp -
(]
doubl: =flS_Sp2_EB10 sfel_En2 doubke
E3 T s » Convert - :{4-]:.} - double =
== Sine Wave i I Qutl
2rad's
[]
Scope
ﬁ doubk i B . incd§_EnB double doublke
L T L
Sine Wawe1 In2 Product Cut2
1 rad's
»
Ready 100% FixedStepDiscrete

2-23

2 Data Types and Scaling

2-24

In the model, the data type displayed with the In1 block indicates that the
output data type name is sfix16_Sp2 B10. This corresponds to fixdt (1,

16, 0.2, 10) which is a signed 16 bit fixed-point number with slope 0.2 and
bias 10.0. The data type displayed with the In2 block indicates that the
output data type name is sfix16_En6. This corresponds to fixdt(1, 16, 6)
which is a signed 16 bit fixed-point number with fraction length of 6.

Floating-Point Numbers

Floating-Point Numbers

In this section...

“Floating-Point Numbers” on page 2-25
“Scientific Notation” on page 2-26
“The IEEE Format” on page 2-26

“Range and Precision” on page 2-28

“Exceptional Arithmetic” on page 2-31

Floating-Point Numbers

Fixed-point numbers are limited in that they cannot simultaneously represent
very large or very small numbers using a reasonable word size. This limitation
can be overcome by using scientific notation. With scientific notation, you can
dynamically place the binary point at a convenient location and use powers of
the binary to keep track of that location. Thus, you can represent a range of
very large and very small numbers with only a few digits.

You can represent any binary floating-point number in scientific notation

form as f2°, where fis the fraction (or mantissa), 2 is the radix or base
(binary in this case), and e is the exponent of the radix. The radix is always a
positive number, while f and e can be positive or negative.

When performing arithmetic operations, floating-point hardware must take
into account that the sign, exponent, and fraction are all encoded within the
same binary word. This results in complex logic circuits when compared with
the circuits for binary fixed-point operations.

The Simulink Fixed Point software supports single-precision and

double-precision floating-point numbers as defined by the IEEE Standard
754. Additionally, a nonstandard IEEE-style number is supported.

2-25

2 Data Types and Scaling

2-26

Scientific Notation

A direct analogy exists between scientific notation and radix point notation.
For example, scientific notation using five decimal digits for the fraction
would take the form

+d.dddd x10? = +ddddd.0x10P~* = +0.ddddd x 107+,

where d =0,...,9 and p is an integer of unrestricted range.

Radix point notation using five bits for the fraction is the same except for
the number base

+b.bbbbx 29 = +bbbbb.0x 2974 = +0.bbbbbx 2911,

where b=0,1 and q is an integer of unrestricted range.

For fixed-point numbers, the exponent is fixed but there is no reason why the
binary point must be contiguous with the fraction. For more information, see
“Binary Point Interpretation” on page 2-4.

The IEEE Format

The IEEE Standard 754 has been widely adopted, and is used with virtually
all floating-point processors and arithmetic coprocessors—with the notable
exception of many DSP floating-point processors.

Among other things, this standard specifies four floating-point number
formats, of which singles and doubles are the most widely used. Each format
contains three components: a sign bit, a fraction field, and an exponent field.
These components, as well as the specific formats for singles and doubles, are
discussed in the sections that follow.

The Sign Bit

While two’s complement is the preferred representation for signed fixed-point
numbers, IEEE floating-point numbers use a sign/magnitude representation,
where the sign bit is explicitly included in the word. Using this representation,
a sign bit of O represents a positive number and a sign bit of 1 represents a
negative number.

Floating-Point Numbers

The Fraction Field

In general, floating-point numbers can be represented in many different ways
by shifting the number to the left or right of the binary point and decreasing
or increasing the exponent of the binary by a corresponding amount.

To simplify operations on these numbers, they are normalized in the IEEE
format. A normalized binary number has a fraction of the form 1.f where f has
a fixed size for a given data type. Since the leftmost fraction bit is always a 1,
it is unnecessary to store this bit and is therefore implicit (or hidden). Thus,
an n-bit fraction stores an n+1-bit number. The IEEE format also supports
denormalized numbers, which have a fraction of the form 0.f. Normalized and
denormalized formats are discussed in more detail in the next section.

The Exponent Field

In the IEEE format, exponent representations are biased. This means a fixed
value (the bias) is subtracted from the field to get the true exponent value.
For example, if the exponent field is 8 bits, then the numbers 0 through 255
are represented, and there is a bias of 127. Note that some values of the
exponent are reserved for flagging Inf (infinity), NaN (not-a-number), and
denormalized numbers, so the true exponent values range from -126 to 127.
See the sections “Inf” on page 2-31 and “NaN” on page 2-31.

Single-Precision Format

The IEEE single-precision floating-point format is a 32-bit word divided into a
1-bit sign indicator s, an 8-bit biased exponent e, and a 23-bit fraction f. For
more information, see “The Sign Bit” on page 2-26, “The Exponent Field” on
page 2-27, and “The Fraction Field” on page 2-27. A representation of this
format is given below.

bg1 byg bgg by

s e f

The relationship between this format and the representation of real numbers
is given by

2-27

2 Data Types and Scaling

2-28

%2 27)1.f) normalized, 0 < e < 255,

value = \(-1*(2°71%6)0.f) denormalized, e =0, f >0,
exceptional value otherwise.

“Exceptional Arithmetic” on page 2-31 discusses denormalized values.

Double-Precision Format

The IEEE double-precision floating-point format is a 64-bit word divided into
a 1-bit sign indicator s, an 11-bit biased exponent e, and a 52-bit fraction f.For
more information, see “The Sign Bit” on page 2-26, “The Exponent Field” on
page 2-27, and “The Fraction Field” on page 2-27. A representation of this
format is shown in the following figure.

bggy bgo bz by

] e f

The relationship between this format and the representation of real numbers
is given by

(-1%2¢71923)1.f) normalized, 0 < e < 2047,

value = \(-1%(2°71922)(0.f) denormalized, e =0, f >0,
exceptional value otherwise.

“Exceptional Arithmetic” on page 2-31 discusses denormalized values.

Range and Precision

The range of a number gives the limits of the representation while

the precision gives the distance between successive numbers in the
representation. The range and precision of an IEEE floating-point number
depend on the specific format.

Floating-Point Numbers

Range
The range of representable numbers for an IEEE floating-point number with f
bits allocated for the fraction, e bits allocated for the exponent, and the bias of

2(2—1)

e given by bias = —1 is given below.

«——— negative numbers << pogitive numhbhers —=

negative negative positive positive
overflow undertflow underflow overflow
where

® Normalized positive numbers are defined within the range o(1-biasy 4,

(2 _ 27f)2blas .

e Normalized negative numbers are defined within the range —2170%9) ¢4
_(2 _ 2—f)2bias .

¢ Positive numbers greater than (2 — 277)2bias and negative numbers greater

than —(2-277 201 gye overflows.

e Positive numbers less than 217%%%) and negative numbers less than

_o(I-bias) 4y6 either underflows or denormalized numbers.

e Zero is given by a special bit pattern, where e=0 and f=0.

Overflows and underflows result from exceptional arithmetic conditions.
Floating-point numbers outside the defined range are always mapped to +Inf.

Note You can use the MATLAB commands realmin and realmax to
determine the dynamic range of double-precision floating-point values for
your computer.

2-29

2 Data Types and Scaling

Precision

Because of a finite word size, a floating-point number is only an approximation
of the “true” value. Therefore, it is important to have an understanding of the
precision (or accuracy) of a floating-point result. In general, a value v with an

accuracy q is specified by v+¢q . For IEEE floating-point numbers,
v = (-1)%(250)(1.f)

and
q = 2-fxQe-bias

Thus, the precision is associated with the number of bits in the fraction field.

Note In the MATLAB software, floating-point relative accuracy is given by
the command eps, which returns the distance from 1.0 to the next larger
floating-point number. For a computer that supports the IEEE Standard 754,
eps = 292 or 2.22045 - 1016,

Floating-Point Data Type Parameters

The high and low limits, exponent bias, and precision for the supported
floating-point data types are given in the following table.

Data Type Low Limit High Limit Exponent Bias | Precision
Single 2126 = 1038 2128~ 3 - 1038 127 223 =107
Double 2:1022 = 9 - 1(-308 21024 = 9 - 1308 1023 252 = 10716
Nonstandard | 2 - s (& - 2y - s 2€-D .1 2/

2-30

Because of the sign/magnitude representation of floating-point numbers,
there are two representations of zero, one positive and one negative. For both

representations e = 0 and f.0 = 0.0.

Floating-Point Numbers

Exceptional Arithmetic

In addition to specifying a floating-point format, the IEEE Standard 754
specifies practices and procedures so that predictable results are produced
independently of the hardware platform. Specifically, denormalized numbers,
Inf, and NaN are defined to deal with exceptional arithmetic (underflow and
overflow).

If an underflow or overflow is handled as Inf or NaN, then significant
processor overhead is required to deal with this exception. Although the IEEE
Standard 754 specifies practices and procedures to deal with exceptional
arithmetic conditions in a consistent manner, microprocessor manufacturers
might handle these conditions in ways that depart from the standard.

Denormalized Numbers

Denormalized numbers are used to handle cases of exponent underflow. When
the exponent of the result is too small (i.e., a negative exponent with too large
a magnitude), the result is denormalized by right-shifting the fraction and
leaving the exponent at its minimum value. The use of denormalized numbers
is also referred to as gradual underflow. Without denormalized numbers, the
gap between the smallest representable nonzero number and zero is much
wider than the gap between the smallest representable nonzero number and
the next larger number. Gradual underflow fills that gap and reduces the
impact of exponent underflow to a level comparable with roundoff among the
normalized numbers. Thus, denormalized numbers provide extended range
for small numbers at the expense of precision.

Inf

Arithmetic involving Inf (infinity) is treated as the limiting case of real
arithmetic, with infinite values defined as those outside the range of
representable numbers, or —o < (representable numbers) < . With the
exception of the special cases discussed below (NaN), any arithmetic operation
involving Inf yields Inf. Inf is represented by the largest biased exponent
allowed by the format and a fraction of zero.

A NaN (not-a-number) is a symbolic entity encoded in floating-point format.
There are two types of NaN: signaling and quiet. A signaling NaN signals an

2-31

2 Data Types and Scaling

2-32

invalid operation exception. A quiet NaN propagates through almost every
arithmetic operation without signaling an exception. The following operations
result in a NaN: oo—o0, —oo+00, 0Xoo, 0/0, and oo/c.

Both types of NaN are represented by the largest biased exponent allowed by
the format and a fraction that is nonzero. The bit pattern for a quiet NaN is
given by 0.f where the most significant number in f must be a one, while the bit
pattern for a signaling NaN is given by 0.f where the most significant number
in f must be zero and at least one of the remaining numbers must be nonzero.

Arithmetic Operations

¢ “Fixed-Point Arithmetic Operations” on page 3-2

e “Precision” on page 3-3

e “Range” on page 3-27

¢ “Recommendations for Arithmetic and Scaling” on page 3-33
* “Parameter and Signal Conversions” on page 3-44

e “Rules for Arithmetic Operations” on page 3-49

® “Conversions and Arithmetic Operations” on page 3-67

3 Arithmetic Operations

3-2

Fixed-Point Arithmetic Operations

When developing a dynamic system using floating-point arithmetic, you
generally don’t have to worry about numerical limitations since floating-point
data types have high precision and range. Conversely, when working with
fixed-point arithmetic, you must consider these factors when developing
dynamic systems:

Overflow

Adding two sufficiently large negative or positive values can produce a
result that does not fit into the representation. This will have an adverse
effect on the control system.

Quantization

Fixed-point values are rounded. Therefore, the output signal to the
plant and the input signal to the control system do not have the same
characteristics as the ideal discrete-time signal.

Computational noise

The accumulated errors that result from the rounding of individual terms
within the realization introduce noise into the control signal.

Limit cycles

In the ideal system, the output of a stable transfer function (digital filter)
approaches some constant for a constant input. With quantization, limit
cycles occur where the output oscillates between two values in steady state.

This chapter describes the limitations involved when arithmetic operations
are performed using encoded fixed-point variables. It also provides
recommendations for encoding fixed-point variables such that simulations
and generated code are reasonably efficient.

Precision

Precision

In this section...

“Limitations on Precision” on page 3-3

“Rounding” on page 3-4

“Choose a Rounding Mode” on page 3-4

“Rounding Modes for Fixed-Point Simulink Blocks” on page 3-5
“Rounding Mode: Ceiling” on page 3-7

“Rounding Mode: Convergent” on page 3-8

“Rounding Mode: Floor” on page 3-10

“Rounding Mode: Nearest” on page 3-11

“Rounding Mode: Round” on page 3-12

“Rounding Mode: Simplest” on page 3-14

“Rounding Mode: Zero” on page 3-17

“Pad with Trailing Zeros” on page 3-19

“Limitations on Precision and Errors” on page 3-20
“Maximize Precision” on page 3-21

“Net Slope and Net Bias Precision” on page 3-21

“Detect Net Slope and Net Bias Precision Issues” on page 3-24

“Detect Fixed-Point Constant Precision Loss” on page 3-25

Limitations on Precision

Computer words consist of a finite numbers of bits. This means that the
binary encoding of variables is only an approximation of an arbitrarily precise
real-world value. Therefore, the limitations of the binary representation
automatically introduce limitations on the precision of the value. For a general
discussion of range and precision, refer to “Range and Precision” on page 2-10.

The precision of a fixed-point word depends on the word size and binary point
location. Extending the precision of a word can always be accomplished with
more bits, but you face practical limitations with this approach. Instead, you

3 Arithmetic Operations

3-4

must carefully select the data type, word size, and scaling such that numbers
are accurately represented. Rounding and padding with trailing zeros are
typical methods implemented on processors to deal with the precision of
binary words.

Rounding

The result of any operation on a fixed-point number is typically stored in a
register that is longer than the number’s original format. When the result is
put back into the original format, the extra bits must be disposed of. That is,
the result must be rounded. Rounding involves going from high precision to
lower precision and produces quantization errors and computational noise.

Choose a Rounding Mode

To choose the most suitable rounding mode for your application, you need to
consider your system requirements and the properties of each rounding mode.
The most important properties to consider are:

® Cost — Independent of the hardware being used, how much processing
expense does the rounding method require?

® Bias — What is the expected value of the rounded values minus the
original values?

® Possibility of overflow — Does the rounding method introduce the
possibility of overflow?

For more information on when to use each rounding mode, see “Rounding
Methods” in the Fixed-Point Toolbox User’s Guide.

Choosing a Rounding Mode for Diagnostic Purposes

Rounding toward ceiling and rounding toward floor are sometimes useful for
diagnostic purposes. For example, after a series of arithmetic operations,

you may not know the exact answer because of word-size limitations, which
introduce rounding. If every operation in the series is performed twice, once
rounding to positive infinity and once rounding to negative infinity, you obtain
an upper limit and a lower limit on the correct answer. You can then decide if
the result is sufficiently accurate or if additional analysis is necessary.

Precision

Rounding Modes for Fixed-Point Simulink Blocks

Fixed-point Simulink blocks support the rounding modes shown in the
expanded drop-down menu of the following dialog box.

P

Function Elock Parameters: Data Type Conversion @

Data Type Conversion

Convert the input to the data type and scaling of the output.

The conversion has two possible goals. One goal is to have the Real World
Values of the input and the output be equal. The other goal is to have the
Stored Integer Values of the input and the output be equal. Overflows and
quantization errors can prevent the goal from being fully achieved.

FParameters
Output minimum: Output maximum:
(1 (]

Output data type: Inherit: Inherit via back propagation -

["] Lock output data type setting against changes by the fixed-point tools

Input and output to have equal: [Real World Value [RWW) v]
Integer rounding mode: Floor =
) Ceiling
["] saturate on integer o Converagent
Sample time (-1 for inheﬁw
MNearest
-1 Round
Simplest
fero
P] oK] [Cancel] [Help Apply

-

The following table illustrates the differences between these rounding modes:

3 Arithmetic Operations

3-6

Rounding Mode Description Tie Handling
Ceiling Rounds to the nearest | N/A
representable number
in the direction of
positive infinity.
Floor Rounds to the nearest | N/A
representable number
in the direction of
negative infinity.
Zero Rounds to the nearest | N/A
representable number
in the direction of zero.
Convergent Rounds to the nearest | Ties are rounded
representable number. | toward the nearest
even integer.
Nearest Rounds to the nearest | Ties are rounded to the
representable number. | closest representable
number in the direction
of positive infinity.
Round Rounds to the nearest | For positive numbers,
representable number. | ties are rounded
toward the closest
representable number
in the direction of
positive infinity.
For negative numbers,
ties are rounded
toward the closest
representable number
in the direction of
negative infinity.
Simplest Automatically chooses | N/A

between Floor and
Zero to produce
generated code that is
as efficient as possible.

Precision

When you round toward ceiling, both positive and negative numbers are

Rounding Mode: Ceiling

rounded toward positive infinity. As a result, a positive cumulative bias is

introduced in the number.

In the MATLAB software, you can round to ceiling using the ceil function.

Rounding toward ceiling is shown in the following figure.

All numbers are rounded
toward positive infinity

Effects of Rounding Mode: Ceiling

Aeug uliebau-palio1s inding

— L] — [— L] -— L]
— — =] 3 — — o] (=1
L] L] L] [) — — — —

' ' ' ' ' ' '

' ' ' ' ' ' '

1 1 1 1 1 1

' ' ' ' - ' '

' ' ' = ' '
' ' = ' '
1 1 1 R —-— 1 1
||||||||| T = T T S
' ' | = ' '
: : | E D : :
1 1 1 1 1
' ' ' H ' '
' ' ' . ' '
' ' ' ' '
1 1 1 1 1
b ' ' ' '
..... dm--- R ——— A

' ' ' '

1 1 1 1

' ' ' '

' ' ' '

' ' ' '

1 1 1 1

' ' ' '

' ' '

..... [O e

1 1 1

' ' '

' ' '

' ' '

1 1 1

' ' '

' ' '

N T B PP 1 1

||||| CE R R T Y B N I I

' ' '

' ' '

' ' '

1 1 1

' ' '

' ' '

' ' '

1 1 1

..... T Y ST TR SR R R,
| ' |

' ' '

1 1 1

' ' '

' ' '

' ' '

1 1 1

' '

..... [4 Y T, I A,
| |

1 1

'

' '

' '

1 1

' '

'

..... R Y T, ool -

1 1 1 1 1

' ' ' ' '

' ' ' ' '

' ' ' ' '

1 1 1 1 1

' ' ' ' '

' ' ' ' '

' ' ' ' '

I I I I I H ‘L
L0 L L0] L Lo L |
- = Lot [} = -
= =] = ! =

aneA plopt-[eax INdiNo

0.25 0.5 0.75

Input Real-World Value

3-7

3 Arithmetic Operations

Rounding Mode: Convergent

Convergent rounds toward the nearest representable value with ties rounding
toward the nearest even integer. It eliminates bias due to rounding. However,
it introduces the possibility of overflow.

3-8

Precision

convergent function. Convergent rounding is shown in the following figure.
Effects of Rounding Mode: Convergent

In the MATLAB software, you can perform convergent rounding using the

All numbers are rounded to the
nearest representable number

Aeug ulisbaupalols nding

=
=
=]

1111

-------—{101
100

i
0.5 0.75
e

= Qutput
n TiePosition
i

bmmmmm— -

—¥— Input
el

i
0.25

Input Real-World Valu

-0.25

-0.5

3-9

.1

Ties are rounded to the
nearest even number

0

3 Arithmetic Operations

Rounding Mode: Floor

When you round toward floor, both positive and negative numbers are

rounded to negative infinity. As a result, a negative cumulative bias is

introduced in the number.

In the MATLAB software, you can round to floor using the floor function.

Rounding toward floor is shown in the following figure.

Effects of Rounding Mode: Floor

Aeuig uiabau-paiolg inding

— = — = — fa] — =
— —] = — — = =
— —] — ~— — ~— —
—
_ _ kS
" " " : _ " : ° =
1 1 1 ' 4 1 ' C c
A 1 1 1 = 1 1 Uﬁ
- " " s & " : o oE
- D T = mmmm = -l o S be-aa- Fmmmmm- Fmmmm- — T.r.
. i = O ! ! = o n_Vu
1 1 1 . 1 1 aﬁ
' ' . ' . =
" " ' < " ' 2>
' ' . ' . o0
Lo P I 0 I - R P —{p=a Qc
! ! _ ! " = Eo
' ' ' ' S =
. . . , c®
! ! ! " P =2
" " " " = <=
- dmmmmmm [P [P, R ™
1 1 1
[
! ! ! " =
. . . . o
1 1 1 1 e
: : : : W
=" 1Tt iy o 1 Pl rTTTTTRyTTt ==,
1 1 1 1 1 —
: : : . : =
' ' ' . : Q)
: : : . : o B
L U e oo F . I S-S o5
1 1 1 1 N
_ _ _ ' _ (==
' ' ' . ' =
1 1 1 1 1
Lo R e R N T [S =5
. . : : : e
1 1 1 1 1 i
1 1 1 1 1
Ly
Lo R e e N PR [
i i i H i i =
1 1 1 1 1 1
1 1 1 1 1 1 =
L) L L) 3 LI} L} L !
i
[= =l Y = [
[=] ! =

aN[eA PHOM-[ESY INdIN

@]

3-10

Precision

Rounding Mode: Nearest

When you round toward nearest, the number is rounded to the nearest
representable value. In the case of a tie, nearest rounds to the closest
representable number in the direction of positive infinity.

In the Fixed-Point Toolbox software, you can round to nearest using the
nearest function. Rounding toward nearest is shown in the following figure.

Ties are rounded to the closest

All numbers are rounded to representable number in the
the nearest representable number direction of positive infinity

Effects of Rounding Mode: Nearest

! ! I I I I I

RS- ---- - -- SEECREED NG ---- SCPLEREE TRCECELEE TREECREED e - --- 011
e e e e e = >
1 1 1 1 1 1 :'j
© 05 booooooos AN booooo-e- boooooees TR A A A YANEEEE TRREEEE —010 £
E 1 1 1 1 EE
© : : . : : -
> : : : : : =
B e S AR - <x R S SRRl UM
= 1 1 1 1 e 1 1 1 i) |
§ : : : : : : : D
T Opeeeee- Femee e Femnneee - - . bememme- Foeoeee- —ooo £
o : : : : : ' ' S
& : : : : : —— |nput e
ar : : : : 5]
= 025 ------- Prosoos re- “ATASERES fo----e- $----| -l Qutput 111 =
= ; : ; ; . . wn
= n TIEF'::SItIDI'I ?L
{ - 1 [1 1 1 1 =
e] S Pt e e e R 1105
: : : : : : O

0.75 e S A S L

_ | | | | | | | 0

-1 075 -05

-0.25 0 0.25 05 0.75
Input Real-World Value

3-11

3 Arithmetic Operations

3-12

Rounding Mode: Round

Round rounds to the closest representable number. In the case of a tie, it
rounds:

¢ Positive numbers to the closest representable number in the direction of
positive infinity.

® Negative numbers to the closest representable number in the direction
of negative infinity.

As a result:

¢ A small negative bias is introduced for negative samples.

¢ No bias is introduced for samples with evenly distributed positive and
negative values.

¢ A small positive bias is introduced for positive samples.

Precision

In the MATLAB software, you can perform this type of rounding using the
round function. The rounding mode Round is shown in the following figure.

All numbers are rounded to the
nearest representable number

Output Real-World Walue

For positive numbers, ties are rounded
to the closest representable number in
the direction of positive infinity

de: Round

Effects of Rounding Mo
I I

! ! / !
3 S S N Ot U SRS SO - & ----{011
05-------- £ CELRCI SUCEELRRT EERCLRRT RAY - * ™~ SELOE bemneon ~010
1 SCEEEREECTITEEPRTEREURRRNSRREERRI R ~ 7 ¥ < SEUPEISETTPEESE FERREES —001
0f-------- eeooeees oooee LY L. ¢ . bonnnees L b —000
! Yoo —— Input
0.251-------- ; ; a¥aviva SRR poooe| oo Qutput {111
; P : 0 TiePosition
E e s T S RORERE —110
0.75 f----- T SRGT SECECEEETEELRTEE —101
i i i 100
T 075 | 05 025 025 05 075

Input Real-World Value

For negative numbers, ties are
rounded to the closest representable
number in the direction of negative
infinity

Output Stored-Integer in Binary

3-13

3 Arithmetic Operations

3-14

Rounding Mode: Simplest

The simplest rounding mode attempts to reduce or eliminate the need for
extra rounding code in your generated code using a combination of techniques,
discussed in the following sections:

¢ “Optimize Rounding for Casts” on page 3-14
¢ “Optimize Rounding for High-Level Arithmetic Operations” on page 3-15

® “Optimize Rounding for Intermediate Arithmetic Operations” on page 3-16

In nearly all cases, the simplest rounding mode produces the most efficient
generated code. For a very specialized case of division that meets three specific
criteria, round to floor might be more efficient. These three criteria are:

¢ Fixed-point/integer signed division
® Denominator is an invariant constant

¢ Denominator is an exact power of two

For this case, set the rounding mode to floor and the Model Configuration
Parameters > Hardware Implementation > Embedded Hardware >
Signed integer division rounds to parameter to describe the rounding
behavior of your production target.

Optimize Rounding for Casts

The Data Type Conversion block casts a signal with one data type to another
data type. When the block casts the signal to a data type with a shorter word
length than the original data type, precision is lost and rounding occurs. The
simplest rounding mode automatically chooses the best rounding for these
cases based on the following rules:

® When casting from one integer or fixed-point data type to another, the
simplest mode rounds toward floor.

® When casting from a floating-point data type to an integer or fixed-point
data type, the simplest mode rounds toward zero.

Precision

Optimize Rounding for High-Level Arithmetic Operations
The simplest rounding mode chooses the best rounding for each
high-level arithmetic operation. For example, consider the operation
y=1u,; X u,/ u;implemented using a Product block:

1
é

++

Product

As stated in the C standard, the most efficient rounding mode for
multiplication operations is always floor. However, the C standard does
not specify the rounding mode for division in cases where at least one of
the operands is negative. Therefore, the most efficient rounding mode for a
divide operation with signed data types can be floor or zero, depending on
your production target.

The simplest rounding mode:

® Rounds to floor for all nondivision operations.

¢ Rounds to zero or floor for division, depending on the setting of the
Model Configuration Parameters > Hardware Implementation >
Embedded Hardware > Signed integer division rounds to parameter.

To get the most efficient code, you must set the Signed integer division
rounds to parameter to specify whether your production target rounds
to zero or to floor for integer division. Most production targets round

to zero for integer division operations. Note that Simplest rounding
enables “mixed-mode” rounding for such cases, as it rounds to floor for
multiplication and to zero for division.

If the Signed integer division rounds to parameter is set to Undefined,
the simplest rounding mode might not be able to produce the most efficient
code. The simplest mode rounds to zero for division for this case, but it

cannot rely on your production target to perform the rounding, because the

3-15

3 Arithmetic Operations

3-16

parameter is Undefined. Therefore, you need additional rounding code to
ensure rounding to zero behavior.

Note For signed fixed-point division where the denominator is an
invariant constant power of 2, the simplest rounding mode does not
generate the most efficient code. In this case, set the rounding mode to floor.

Optimize Rounding for Intermediate Arithmetic Operations

For fixed-point arithmetic with nonzero slope and bias, the simplest rounding
mode also chooses the best rounding for each intermediate arithmetic
operation. For example, consider the operation y = u, / u, implemented using
a Product block, where u, and u, are fixed-point quantities:

'

Product

As discussed in “Fixed-Point Numbers” on page 2-3, each fixed-point quantity
1s calculated using its slope, bias, and stored integer. So in this example,

not only is there the high-level divide called for by the block operation, but
intermediate additions and multiplies are performed:

_ _ 5@ +B
ug Soly + By

The simplest rounding mode performs the best rounding for each of these
operations, high-level and intermediate, to produce the most efficient

code. The rules used to select the appropriate rounding for intermediate
arithmetic operations are the same as those described in “Optimize Rounding
for High-Level Arithmetic Operations” on page 3-15. Again, this enables
mixed-mode rounding, with the most common case being round toward floor

Precision

used for additions, subtractions, and multiplies, and round toward zero used
for divides.

Remember that generating the most efficient code using the simplest
rounding mode requires you to set the Model Configuration Parameters >
Hardware Implementation > Embedded Hardware > Signed integer
division rounds to parameter to describe the rounding behavior of your
production target.

Note For signed fixed-point division where the denominator is an invariant
constant power of 2, the simplest rounding mode does not generate the most
efficient code. In this case, set the rounding mode to floor.

Rounding Mode: Zero

Rounding towards zero is the simplest rounding mode computationally. All
digits beyond the number required are dropped. Rounding towards zero
results in a number whose magnitude is always less than or equal to the
more precise original value. In the MATLAB software, you can round to zero
using the fix function.

Rounding toward zero introduces a cumulative downward bias in the result
for positive numbers and a cumulative upward bias in the result for negative
numbers. That is, all positive numbers are rounded to smaller positive
numbers, while all negative numbers are rounded to smaller negative
numbers. Rounding toward zero is shown in the following figure.

3-17

Positive numbers are rounded
to smaller positive numbers

Effects of Rounding Mode: Zern/

3 Arithmetic Operations

[=)
[ay]
(o]
g
Q
+—
Aeuig uiebau-paliois inding b=
—] — = — = —] on
— — [] =] — — [] 3 =]
(] [] (=] (=] — — — — 1m
- +
" " " " " " " n
1 1 1 1 1 1 e
: " " A= " " £
: : N PR : : g 2
A S S N o = O O = m
Vs ! A= ! " = g
! ! ! : ! ! @
' ' ' H ' 1 [<D])
— L u_:,u L - 2
I v R LI b 52
1 1 1 1 1 1 omm p
' ' ' ' ' ' ™
" " " " " ! @ g s
! ! ! ! ! ! = s
IR PR by oo PTetees P A A S =
' ' ' ' ' = = = O
" " " ! ! > - s
! ! ! ! ! = w .S
" " " " " o 23
RERRRRE R S e (LEEEE EEEEE SREEES teeeee— o = £ 2
L o = S 2
s L e £z
BRRRRELEEEEED TRRRREEEEEEEES e R RS T = s
" " " " " a g
: : " " " = 3 Q3
: : : : ! T» oS
I dm e e e - [[S [o L e e e — _..._H_ c [0) n on
)))) \ = S = o
1 1 1 1 1 T Ob d o=
! ! ! ! " S £ € S
\ \ \ \ o | m =]) m
1 1 1 1 /
" " " " o © < 0 3
L. R [R . it~ IS =i » oVu &
! ! ! ! ! P o>
' ' ' ' ' [O +=
! ! ! ! ! o®
1 1 1 1 1 (@)]
! ! ! ! ! €3
" " " " " . Sc
1 1 1 1 1 1 ...Lal (=S
L0 L0 Loy =] L L0 L ! o O
= = [[} = [! S =
[[— ! — = @©
[[%m
aneA PUofA-EaY INAING %) w
z2o

the same thing. However, the results produced by rounding to zero and

3-18

Precision

truncation are different for unsigned and two’s complement numbers. For
this reason, the ambiguous term “truncation” is not used in this guide, and
explicit rounding modes are used instead.

To 1llustrate this point, consider rounding a 5-bit unsigned number to zero
by dropping (truncating) the two least significant bits. For example, the
unsigned number 100.01 = 4.25 is truncated to 100 = 4. Therefore, truncating
an unsigned number is equivalent to rounding to zero or rounding to floor.

Now consider rounding a 5-bit two’s complement number by dropping the
two least significant bits. At first glance, you may think truncating a two’s
complement number is the same as rounding to zero. For example, dropping
the last two digits of -3.75 yields -3.00. However, digital hardware performing
two’s complement arithmetic yields a different result. Specifically, the
number 100.01 = -3.75 truncates to 100 = -4, which is rounding to floor.

Pad with Trailing Zeros

Padding with trailing zeros involves extending the least significant bit (LSB)
of a number with extra bits. This method involves going from low precision to
higher precision.

For example, suppose two numbers are subtracted from each other. First,
the exponents must be aligned, which typically involves a right shift of the
number with the smaller value. In performing this shift, significant digits
can “fall off” to the right. However, when the appropriate number of extra
bits is appended, the precision of the result is maximized. Consider two 8-bit
fixed-point numbers that are close in value and subtracted from each other:

1.0000000% 27 —~1.1111111x2971,
where ¢ is an integer. To perform this operation, the exponents must be equal:

1.0000000x 27

~0.1111111x2¢
0.0000001x29

3-19

3 Arithmetic Operations

3-20

If the top number is padded by two zeros and the bottom number is padded
with one zero, then the above equation becomes

1.000000000 x 29

~0.111111110x 29
0.000000010%x 27

which produces a more precise result. An example of padding with trailing
zeros in a Simulink model is illustrated in “Digital Controller Realization”
on page 9-42.

Limitations on Precision and Errors

Fixed-point variables have a limited precision because digital systems
represent numbers with a finite number of bits. For example, suppose

you must represent the real-world number 35.375 with a fixed-point
number. Using the encoding scheme described in “Scaling” on page 2-5, the
representation 1s

V=V=SQ+B=272Q+32,

where V = 35.375.

The two closest approximations to the real-world value are @ = 13 and @ = 14:

272(13)+32 = 35.25,
Voo

% (14)+32 = 35.50.

In either case, the absolute error is the same:

IV -v]=0.125 =

S _F2F
2

For fixed-point values within the limited range, this represents the worst-case
error if round-to-nearest is used. If other rounding modes are used, the
worst-case error can be twice as large:

Precision

[V -vl|< F2E.

Maximize Precision

Precision is limited by slope. To achieve maximum precision, you should
make the slope as small as possible while keeping the range adequately large.
The bias i1s adjusted in coordination with the slope.

Assume the maximum and minimum real-world values are given by max(V)
and min(V), respectively. These limits might be known based on physical
principles or engineering considerations. To maximize the precision, you must
decide upon a rounding scheme and whether overflows saturate or wrap.

To simplify matters, this example assumes the minimum real-world value
corresponds to the minimum encoded value, and the maximum real-world
value corresponds to the maximum encoded value. Using the encoding scheme
described in “Scaling” on page 2-5, these values are given by

max (V) = F2F (max(Q))+B
min (V) = F2F (min(Q)) + B.

Solving for the slope, you get

B max (V)-min (V) _ max (V)-min(V)
F2= = max (Q)-min(Q) Qws _ 1)

This formula is independent of rounding and overflow issues, and depends
only on the word size, ws.

Net Slope and Net Bias Precision

What are Net Slope and Net Bias?

You can represent a fixed-point number by a general slope and bias encoding
scheme

V=V=8Q+B,

3-21

3 Arithmetic Operations

3-22

where:

® V is an arbitrarily precise real-world value.

e V is the approximate real-world value.

@, the stored value, is an integer that encodes V.
S = F2F is the slope.
B is the bias.

For a cast operation,

SaQa + Ba = Sbe +Bb

or

_Sp@ (By—B,
Qa - Sa +(S >

a

where:

Se

e S, is the net slope.

Bb _Ba

o S, 1is the net bias.

Detecting Net Slope and Net Bias Precision Issues

Precision issues might occur in the fixed-point constants, net slope and net
bias, due to quantization errors when you convert from floating point to fixed
point. These fixed-point constant precision issues can result in numerical
inaccuracy in your model.

You can configure your model to alert you when fixed-point constant precision
issues occur. For more information, see “Detect Net Slope and Net Bias
Precision Issues” on page 3-24. The Simulink Fixed Point software provides
the following information:

Precision

The type of precision issue: underflow, overflow, or precision loss.
® The original value of the fixed-point constant.
® The quantized value of the fixed-point constant.

® The error in the value of the fixed-point constant.

The block that introduced the error.

This information warns you that the outputs from this block are not accurate.
If possible, change the data types in your model to fix the issue.

Fixed-Point Constant Underflow

Fixed-point constant underflow occurs when the Simulink Fixed Point
software encounters a fixed-point constant whose data type does not have
enough precision to represent the ideal value of the constant, because the
ideal value is too close to zero. Casting the ideal value to the fixed-point data
type causes the value of the fixed-point constant to become zero. Therefore
the value of the fixed-point constant differs from its ideal value.

Fixed-Point Constant Overflow

Fixed-point constant overflow occurs when the Simulink Fixed Point software
converts a fixed-point constant to a data type whose range is not large enough
to accommodate the ideal value of the constant with reasonable precision.
The data type cannot accurately represent the ideal value because the ideal
value is either too large or too small. Casting the ideal value to the fixed-point
data type causes overflow. For example, suppose the ideal value is 200 and
the converted data type is int8. Overflow occurs in this case because the
maximum value that int8 can represent is 127.

The Simulink Fixed Point software reports an overflow error if the quantized
value differs from the ideal value by more than the precision for the data type.
The precision for a data type is approximately equal to the default scaling (for
more information, see “Fixed-Point Data Type Parameters” on page 2-11.)
Therefore, for positive values, the Simulink Fixed Point software treats errors
greater than the slope as overflows. For negative values, it treats errors
greater than or equal to the slope as overflows.

3-23

3 Arithmetic Operations

3-24

For example, the maximum value that int8 can represent is 127. The
precision for int8 is 1.0. An ideal value of 127.3 quantizes to 127 with

an absolute error of 0.3. Although the ideal value 127.3 is greater than

the maximum representable value for int8, the quantization error is small
relative to the precision of int8. Therefore the Simulink Fixed Point software
does not report an overflow. However, an ideal value of 128.1 does cause

an overflow because the quantization error is 1.1, which is larger than the
precision for int8.

Note Fixed-point constant overflow differs from fixed-point constant
precision loss. Precision loss occurs when the ideal fixed-point constant value
1s within the range of the current data type and scaling, but the software
cannot represent this value exactly.

Fixed-Point Constant Precision Loss

Fixed-point constant precision loss occurs when the Simulink Fixed Point
software converts a fixed-point constant to a data type without enough
precision to represent the exact value of the constant. As a result, the
quantized value differs from the ideal value. For an example of this behavior,
see “Detect Fixed-Point Constant Precision Loss” on page 3-25.

Note Fixed-point constant precision loss differs from fixed-point constant
overflow. Overflow occurs when the range of the parameter data type, that
is, the maximum value that it can represent, is smaller than the ideal value
of the parameter.

Detect Net Slope and Net Bias Precision Issues

To receive alerts when fixed-point constant precision issues occur, use these
options available in the Simulink Configuration Parameters dialog box, on
the Diagnostics > Type Conversion pane. Set the parameters to warning
or error so that Simulink alerts you when precision issues occur.

Precision

Configuration
Parameter

Specifies

Default

“Detect underflow”

Diagnostic action when
a fixed-point constant
underflow occurs
during simulation

Does not generate a
warning or error.

“Detect overflow”

Diagnostic action when
a fixed-point constant
overflow occurs during
simulation

Does not generate a
warning or error.

“Detect precision loss”

Diagnostic action when
a fixed-point constant
precision loss occurs
during simulation

Does not generate a
warning or error.

Detect Fixed-Point Constant Precision Loss

This example shows how to detect fixed-point constant precision loss. The

example uses the following model.

Convert

=fi6_S1p000001

e 1)

A

Data Type Conversion

For the Data Type Conversion block in this model, the:

¢ Input slope, S;; =1

¢ Qutput slope, S, = 1.000001
® Net slope, S;;/Sy, = 1/1.000001

When you simulate the model, a net slope quantization error occurs.

To set up the model and run the simulation:

1 For the Inport block, set the Output data type to int16.

3-25

3 Arithmetic Operations

2 For the Data Type Conversion block, set the Output data type to
fixdt (1,16, 1.000001, 0).

3 Set the Diagnostics > Type Conversion > Detect precision loss
configuration parameter to error.

4 In your Simulink model window, select Simulation > Run.

The Simulink Fixed Point software generates an error informing you that

net scaling quantization caused precision loss. The message provides the
following information:

® The block that introduced the error.
® The original value of the net slope.
¢ The quantized value of the net slope.

® The error in the value of the net slope.

3-26

Range

Range

In this section...

“Limitations on Range” on page 3-27

“What Are Saturation and Wrapping?” on page 3-28
“Saturation and Wrapping” on page 3-28

“Guard Bits” on page 3-31

“Determine the Range of Fixed-Point Numbers” on page 3-31

Limitations on Range

Limitations on the range of a fixed-point word occur for the same reason as
limitations on its precision. Namely, fixed-point words have limited size. For
a general discussion of range and precision, refer to “Range and Precision”
on page 2-10.

In binary arithmetic, a processor might need to take an n-bit fixed-point
number and store it in m bits, where m # n. If m < n, the range of the
number has been reduced and an operation can produce an overflow condition.
Some processors identify this condition as Inf or NaN. For other processors,
especially digital signal processors (DSPs), the value saturates or wraps. If m
> n, the range of the number has been extended. Extending the range of a
word requires the inclusion of guard bits, which act to guard against potential
overflow. In both cases, the range depends on the word’s size and scaling.

The Simulink software supports saturation and wrapping for all fixed-point
data types, while guard bits are supported only for fractional data types.
As shown in the following figure, you can select saturation or wrapping for
fixed-point Simulink blocks with the Saturate on integer overflow check
box. By setting Output data type to sfrac(36,4), you specify a 36-bit
signed fractional data type with 4 guard bits (total word size is 40 bits).

3-27

3 Arithmetic Operations

E Function Block Parameters: Gain @
Gain

Element-wise gain {y = K.*u) or matrix gain (y = K*u or y = u®K).

Main Signal Attributes Parameter Attributes |

Output minimum: Output maximum:

[[]

Output data type: sfrac(36,4) -

["] Lock output data type setting against changes by the fixed-point tools

Integer rounding mode: [Floor *]

Saturate on integer overflows

") [oK H Cancel H Help] Apply

What Are Saturation and Wrapping?

Saturation and wrapping describe a particular way that some processors deal
with overflow conditions. For example, the ADSP-2100 family of processors
from Analog Devices™ supports either of these modes. If a register has

a saturation mode of operation, then an overflow condition is set to the
maximum positive or negative value allowed. Conversely, if a register has a
wrapping mode of operation, an overflow condition is set to the appropriate
value within the range of the representation.

Saturation and Wrapping

Consider an 8-bit unsigned word with binary-point-only scaling of 2%. Suppose
this data type must represent a sine wave that ranges from -4 to 4. For values
between 0 and 4, the word can represent these numbers without regard to
overflow. This is not the case with negative numbers. If overflows saturate,

3-28

Range

all negative values are set to zero, which is the smallest number representable
by the data type. The saturation of overflows is shown in the following figure.

Overflows Saturate

Negative values Negative values
saturate to zero saturate to zero
| | | |
0 0.4 0.8 1.2 1.6 2
Time

If overflows wrap, all negative values are set to the appropriate positive value.
The wrapping of overflows is shown in the following figure.

3-29

3 Arithmetic Operations

Overflows Wrap
8 T T
6 |
4+ 4
2 |
Negative values Negative values
wrap to positive wrap to positive
values. values.
0 | | | |
0 0.4 0.8 1.2 1.6 2
Time

3-30

Note For most control applications, saturation is the safer way of dealing
with fixed-point overflow. However, some processor architectures allow
automatic saturation by hardware. If hardware saturation is not available,
then extra software is required, resulting in larger, slower programs. This
cost is justified in some designs—perhaps for safety reasons. Other designs
accept wrapping to obtain the smallest, fastest software.

Range

Guard Bits

You can eliminate the possibility of overflow by appending the appropriate
number of guard bits to a binary word.

For a two’s complement signed value, the guard bits are filled with either 0’s
or 1’s depending on the value of the most significant bit (MSB). This is called
sign extension. For example, consider a 4-bit two’s complement number with
value 1011. If this number is extended in range to 7 bits with sign extension,
then the number becomes 1111101 and the value remains the same.

Guard bits are supported only for fractional data types. For both signed and
unsigned fractionals, the guard bits lie to the left of the default binary point.

Determine the Range of Fixed-Point Numbers

Fixed-point variables have a limited range for the same reason they have
limited precision—because digital systems represent numbers with a finite
number of bits. As a general example, consider the case where an integer
is represented as a fixed-point word of size ws. The range for signed and
unsigned words is given by

max (@) - min (@),

where

0 unsigned,

—gws-1 signed,

min (Q) ={

2ws _1 unsigned,
257l _ 1 gigned.

max (Q) ={

Using the general [Slope Bias] encoding scheme described in “Scaling” on
page 2-5, the approximate real-world value has the range

max(V)—min(V),

where

3-31

3 Arithmetic Operations

- B unsigned,
min (V) = g 1
_F2E(gws 1), B signed,

~ F2E (25 _1)4+B unsigned,
max(V) =
F2E(2vs1 _1)4B signed.

If the real-world value exceeds the limited range of the approximate value,
then the accuracy of the representation can become significantly worse.

3-32

Recommendations for Arithmetic and Scaling

Recommendations for Arithmetic and Scaling

In this section...

“Arithmetic Operations and Fixed-Point Scaling” on page 3-33
“Addition” on page 3-34

“Accumulation” on page 3-37

“Multiplication” on page 3-37

“Gain” on page 3-39

“Division” on page 3-41

“Summary” on page 3-43

Arithmetic Operations and Fixed-Point Scaling

The sections that follow describe the relationship between arithmetic
operations and fixed-point scaling, and offer some basic recommendations that
may be appropriate for your fixed-point design. For each arithmetic operation,

® The general [Slope Bias] encoding scheme described in “Scaling” on page
2-5 1s used.

¢ The scaling of the result is automatically selected based on the scaling of
the two inputs. In other words, the scaling is inherited.

e Scaling choices are based on
= Minimizing the number of arithmetic operations of the result
= Maximizing the precision of the result
Additionally, binary-point-only scaling is presented as a special case of the

general encoding scheme.

In embedded systems, the scaling of variables at the hardware interface
(the ADC or DAC) is fixed. However for most other variables, the scaling is
something you can choose to give the best design. When scaling fixed-point
variables, it is important to remember that

® Your scaling choices depend on the particular design you are simulating.

3-33

3 Arithmetic Operations

3-34

® There is no best scaling approach. All choices have associated advantages
and disadvantages. It is the goal of this section to expose these advantages
and disadvantages to you.

Addition
Consider the addition of two real-world values:
V, =V, +V..

These values are represented by the general [Slope Bias] encoding scheme
described in “Scaling” on page 2-5:

E.
Vi =FLZ LQi'l'Bi.

In a fixed-point system, the addition of values results in finding the variable

Qy

Fb E -E F, r_g Bb +B, - B,
=—292% " 4+ € 9% + c a
Qa Fa Qb Fa Qc F

a

PR

This formula shows

¢ In general, @, is not computed through a simple addition of @, and Q..

¢ In general, there are two multiplications of a constant and a variable, two
additions, and some additional bit shifting.

Inherited Scaling for Speed

In the process of finding the scaling of the sum, one reasonable goal is to
simplify the calculations. Simplifying the calculations should reduce the
number of operations, thereby increasing execution speed. The following
choices can help to minimize the number of arithmetic operations:

® Set B, = B, + B,. This eliminates one addition.

® Set F,=F, or I, = F,. Either choice eliminates one of the two constant
times variable multiplications.

Recommendations for Arithmetic and Scaling

The resulting formula is

F
Q, =25%"F.q, + FczEc—Ea Q

C
a
or

F, _ _
Q{l =F_b2Eb EaQb+2Ec EQQC‘

a

These equations appear to be equivalent. However, your choice of rounding
and precision may make one choice stand out over the other. To further
simplify matters, you could choose E, = E_ or E, = E,. This will eliminate
some bit shifting.

Inherited Scaling for Maximum Precision

In the process of finding the scaling of the sum, one reasonable goal is
maximum precision. You can determine the maximum-precision scaling if the
range of the variable is known. “Maximize Precision” on page 3-21 shows that
you can determine the range of a fixed-point operation from max(V,) and
min(V,). For a summation, you can determine the range from

min(Va) = min(Vb)+min(VC),
x(

7e)-

You can now derive the maximum-precision slope:

max(Va) = max(Vb) +ma

7 ok _ max(Va)—min(Va)
- 2wsa _1

a
_ F, 2% (%% 1) + F,25 (22 ~1)
- 2wsa _1 '

In most cases the input and output word sizes are much greater than one,
and the slope becomes

3-35

3 Arithmetic Operations

3-36

Fa 2Ea - Fb 2Eb+wsb7wsa +Fc2Ec+ws;wsa’

which depends only on the size of the input and output words. The
corresponding bias is

B, =min(V,) - F,2% min(Q,).

The value of the bias depends on whether the inputs and output are signed
or unsigned numbers.

If the inputs and output are all unsigned, then the minimum values for these
variables are all zero and the bias reduces to a particularly simple form:

B, =By +B,.
If the inputs and the output are all signed, then the bias becomes

B, =B, +B, +F,2% (—2“’%*1 +29%71) 1 2% (—2“’Sf1 +9ws1)
B,~B,+B,.

Binary-Point-Only Scaling
For binary-point-only scaling, finding @, results in this simple expression:

Qa — 2Eb_Ea Qb + 2Ec_Ea Q

c

This scaling choice results in only one addition and some bit shifting. The
avoidance of any multiplications is a big advantage of binary-point-only
scaling.

Note The subtraction of values produces results that are analogous to those
produced by the addition of values.

Recommendations for Arithmetic and Scaling

Accumulation

The accumulation of values is closely associated with addition:

Va,new = Vafold +Vb'
Finding @ involves one multiplication of a constant and a variable, two

a_new
additions, and some bit shifting:

Fy oE,-E B, -E
= + =27 ey +—-27 e,
Qa_new Qa_old F Qb F

a a

The important difference for fixed-point implementations is that the scaling of
the output is identical to the scaling of the first input.

Binary-Point-Only Scaling

For binary-point-only scaling, finding @ results in this simple expression:

a_new

E -E
Qa_new :Qa_old+2 b aQb'

This scaling option only involves one addition and some bit shifting.

Note The negative accumulation of values produces results that are
analogous to those produced by the accumulation of values.

Multiplication

Consider the multiplication of two real-world values:

V,=V,V..

These values are represented by the general [Slope Bias] encoding scheme
described in “Scaling” on page 2-5:

E.
Vi =F‘L2 LQi'l'Bi.

3-37

3 Arithmetic Operations

3-38

In a fixed-point system, the multiplication of values results in finding the
variable @

FF _ F,B _
Q, :%gEﬁEc E.Q,Q, _,_%21'35 E.Q,

a a
L FeBy 4F.-E, Q,+ BbB;‘_ By o-E,

a a

This formula shows

¢ In general, @, is not computed through a simple multiplication of €, and Q..

¢ In general, there is one multiplication of a constant and two variables, two
multiplications of a constant and a variable, three additions, and some
additional bit shifting.

Inherited Scaling for Speed

The number of arithmetic operations can be reduced with these choices:

® Set B, = B,B,. This eliminates one addition operation.

® Set I, = F,F . This simplifies the triple multiplication—certainly the most
difficult part of the equation to implement.

® Set £, =E, + E_. This eliminates some of the bit shifting.

The resulting formula is

B, g . By.g
= +L£277 Q@ + =227 Q..
Q(l QbQC Irc Qb Fb QC

Inherited Scaling for Maximum Precision

You can determine the maximum-precision scaling if the range of the variable
1s known. “Maximize Precision” on page 3-21 shows that you can determine
the range of a fixed-point operation from

max(Va)

Recommendations for Arithmetic and Scaling

and

min(Va).

For multiplication, you can determine the range from

min(V,,) =min (Vzz,Viy, Vi, Ve),

max (V,) = max(Vyr, Vg, Vi, Ve),
where

ViL :min(V)-min(~c)
Vi =min(V,) max(V,),
Vyr = max() mm(e

Vun =max(V) max(V)

Binary-Point-Only Scaling

For binary-point-only scaling, finding @, results in this simple expression:

Qa — 2Eb+Ec_Ea Qch

Gain

Consider the multiplication of a constant and a variable
V, =KV,

where K is a constant called the gain. Since V, results from the multiplication

of a constant and a variable, finding €, is a simplified version of the general
fixed-point multiplication formula:

o | EB 28 .| KBy~ B,
= b —_— .
¢ | F,2F F, 25

3-39

3 Arithmetic Operations

3-40

Note that the terms in the parentheses can be calculated offline. Therefore,
there is only one multiplication of a constant and a variable and one addition.

To implement the above equation without changing it to a more complicated
form, the constants need to be encoded using a binary-point-only format. For
each of these constants, the range is the trivial case of only one value. Despite
the trivial range, the binary point formulas for maximum precision are still
valid. The maximum-precision representations are the most useful choices
unless there is an overriding need to avoid any shifting. The encoding of

the constants is

KF, 25

=28xQy
F,2F
KBy~ By |_oE g
. 2F. Y
a

resulting in the formula

Q, =2 QxQp +2" Qy.

Inherited Scaling for Speed

The number of arithmetic operations can be reduced with these choices:

® Set B, = KB,. This eliminates one constant term.
® Set I, = KF, and E, = E,. This sets the other constant term to unity.

The resulting formula is simply
Qa = Qb

If the number of bits is different, then either handling potential overflows or
performing sign extensions is the only possible operation involved.

Recommendations for Arithmetic and Scaling

Inherited Scaling for Maximum Precision

The scaling for maximum precision does not need to be different from the
scaling for speed unless the output has fewer bits than the input. If this is the
case, then saturation should be avoided by dividing the slope by 2 for each lost
bit. This prevents saturation but causes rounding to occur.

Division

Division of values is an operation that should be avoided in fixed-point
embedded systems, but it can occur in places. Therefore, consider the division
of two real-world values:

V,=V,/V,.

These values are represented by the general [Slope Bias] encoding scheme
described in “Scaling” on page 2-5:

E.
Vi =F‘LZ LQi+Bi'

In a fixed-point system, the division of values results in finding the variable

Qy

Fb 2Eb Qb + Bb Ba 2_Ea

- E+E E
F.F,2%*%Q, +B,F 2" F,

a

This formula shows

¢ In general, @, is not computed through a simple division of @, by Q..

¢ In general, there are two multiplications of a constant and a variable, two
additions, one division of a variable by a variable, one division of a constant
by a variable, and some additional bit shifting.

Inherited Scaling for Speed

The number of arithmetic operations can be reduced with these choices:

® Set B, = 0. This eliminates one addition operation.

3-41

3 Arithmetic Operations

3-42

e If B, =0, then set the fractional slope I, = F,/F.. This eliminates one
constant times variable multiplication.

The resulting formula is

Q, - @ o5,-5-E, , (Bo/F) ok B,

Qc QC

If B, # 0, then no clear recommendation can be made.

Inherited Scaling for Maximum Precision

You can determine the maximum-precision scaling if the range of the variable
is known. “Maximize Precision” on page 3-21 shows that you can determine
the range of a fixed-point operation from

max(Va)
and

min (Va)
For division, you can determine the range from

min (V,) =min(Vyz, iy, Var, Vi)

max (V,) = max(Vyr, Vg, Vi, Vag),

where for nonzero denominators

Vi1, = min (V3)/min(V,),
(VC)’
Vur, :max(Vb)/min(),

Vun :max(Vb)/max(‘;c).

Vig = min(Vb)/max

Recommendations for Arithmetic and Scaling

Binary-Point-Only Scaling

For binary-point-only scaling, finding @, results in this simple expression:

Q{l = & 2Eb _Ec _Ea .
Q.

Note For the last two formulas involving @, a divide by zero and zero
divided by zero are possible. In these cases, the hardware will give some
default behavior but you must make sure that these default responses give
meaningful results for the embedded system.

Summary

From the previous analysis of fixed-point variables scaled within the general
[Slope Bias] encoding scheme, you can conclude

¢ Addition, subtraction, multiplication, and division can be very involved
unless certain choices are made for the biases and slopes.

¢ Binary-point-only scaling guarantees simpler math, but generally sacrifices
some precision.

Note that the previous formulas don’t show the following:

® Constants and variables are represented with a finite number of bits.
e Variables are either signed or unsigned.

¢ Rounding and overflow handling schemes. You must make these decisions
before an actual fixed-point realization is achieved.

3-43

3 Arithmetic Operations

Parameter and Signal Conversions

3-44

In this section...

“Introduction” on page 3-44

“Parameter Conversions” on page 3-45

“Signal Conversions” on page 3-46

Introduction

To completely understand the results generated by fixed-point Simulink
blocks, you must be aware of these issues:

¢ When numerical block parameters are converted from doubles to Simulink
Fixed Point data types

® When input signals are converted from one Simulink Fixed Point data type
to another (if at all)

¢ When arithmetic operations on input signals and parameters are performed

For example, suppose a fixed-point Simulink block performs an arithmetic
operation on its input signal and a parameter, and then generates output
having characteristics that are specified by the block. The following diagram
illustrates how these issues are related.

Parameter and Signal Conversions

Fixed-point Simulink block

|Paramete1' value |
N
N

Input >|Ope1'ati0n |

l N

Output data type
Output scaling

Rounding
Overflow handling

Output

The sections that follow describe parameter and signal conversions. “Rules
for Arithmetic Operations” on page 3-49 discusses arithmetic operations.

Parameter Conversions

Parameters of fixed-point blocks that accept numerical values are always
converted from double to a fixed-point data type. Parameters can be
converted to the input data type, the output data type, or to a data type
explicitly specified by the block. For example, the Discrete FIR Filter block
converts its Initial states parameter to the input data type, and converts its
Numerator coefficient parameter to a data type you explicitly specify via
the block dialog box.

Parameters are always converted before any arithmetic operations are

performed. Additionally, parameters are always converted offline using
round-to-nearest and saturation. Offline conversions are discussed below.

3-45

3 Arithmetic Operations

3-46

Note Because parameters of fixed-point blocks begin as double, they are
never precise to more than 53 bits. Therefore, if the output of your fixed-point
block is longer than 53 bits, your result might be less precise than you
anticipated.

Offline Conversions

An offline conversion is a conversion performed by your development platform
(for example, the processor on your PC), and not by the fixed-point processor
you are targeting. For example, suppose you are using a PC to develop a
program to run on a fixed-point processor, and you need the fixed-point
processor to compute

y=(a—bJu=Cu
c

over and over again. If a, b, and ¢ are constant parameters, it is inefficient
for the fixed-point processor to compute ab/c every time. Instead, the PC’s
processor should compute ab/c offline one time, and the fixed-point processor
computes only Cu. This eliminates two costly fixed-point arithmetic
operations.

Signal Conversions

Consider the conversion of a real-world value from one fixed-point data type
to another. Ideally, the values before and after the conversion are equal.

V, =V,

where V, is the input value and V, is the output value. To see how the
conversion is implemented, the two ideal values are replaced by the general
[Slope Bias] encoding scheme described in “Scaling” on page 2-5:

E.
‘/i :F‘l2 lQi+Bi'

Solving for the output data type’s stored integer value, €, is obtained:

Parameter and Signal Conversions

F, oE,-E B,-B, ,E
_ b 9B,-E, o , b~ Da 5-E,
Q, F, Q@ 7

a
=F2bEqQ +B

net >

where F_ is the adjusted fractional slope and B, , is the net bias. The offline
conversions and online conversions and operations are discussed below.

Offline Conversions

Both F, and B, , are computed offline using round-to-nearest and saturation.
B, is then stored using the output data type and F| is stored using an
automatically selected data type.

Online Conversions and Operations

The remaining conversions and operations are performed online by the
fixed-point processor, and depend on the slopes and biases for the input and
output data types. The conversions and operations are given by these steps:

1 The initial value for @, is given by the net bias, B,
Qy = Bes-

2 The input integer value, @,, is multiplied by the adjusted slope, F.:
QRawProduct = Fs@p-

3 The result of step 2 is converted to the modified output data type where the
slope is one and bias is zero:

QTemp = convert(QRawProduct)

This conversion includes any necessary bit shifting, rounding, or overflow
handling.

4 The summation operation is performed:

Q, = QTemp +Qy-

3-47

3 Arithmetic Operations

This summation includes any necessary overflow handling.

Streamlining Simulations and Generated Code

Note that the maximum number of conversions and operations is performed
when the slopes and biases of the input signal and output signal differ

(are mismatched). If the scaling of these signals is identical (matched), the
number of operations is reduced from the worst (most inefficient) case. For
example, when an input has the same fractional slope and bias as the output,
only step 3 is required:

Q, = convert(Q).

Exclusive use of binary-point-only scaling for both input signals and output
signals 1s a common way to eliminate mismatched slopes and biases, and
results in the most efficient simulations and generated code.

3-48

Rules for Arithmetic Operations

Rules for Arithmetic Operations

In this section...

“Introduction” on page 3-49
“Computational Units” on page 3-49
“Addition and Subtraction” on page 3-50
“The Summation Process” on page 3-52
“Multiplication” on page 3-55

“The Multiplication Process” on page 3-60
“Division” on page 3-62

“The Division Process” on page 3-64

“Shifts” on page 3-65

Introduction

Fixed-point arithmetic refers to how signed or unsigned binary words are
operated on. The simplicity of fixed-point arithmetic functions such as
addition and subtraction allows for cost-effective hardware implementations.

The sections that follow describe the rules that the Simulink software follows
when arithmetic operations are performed on inputs and parameters. These
rules are organized into four groups based on the operations involved:
addition and subtraction, multiplication, division, and shifts. For each

of these four groups, the rules for performing the specified operation are
presented with an example using the rules.

Note For information about calculations using Fixed-Point Toolbox software,
see the Fixed-Point Toolbox User’s Guide.

Computational Units

The core architecture of many processors contains several computational
units including arithmetic logic units (ALUs), multiply and accumulate units
(MACs), and shifters. These computational units process the binary data

3-49

3 Arithmetic Operations

3-50

directly and provide support for arithmetic computations of varying precision.
The ALU performs a standard set of arithmetic and logic operations as well as
division. The MAC performs multiply, multiply/add, and multiply/subtract
operations. The shifter performs logical and arithmetic shifts, normalization,
denormalization, and other operations.

Addition and Subtraction

Addition is the most common arithmetic operation a processor performs.
When two n-bit numbers are added together, it is always possible to produce a
result with n + 1 nonzero digits due to a carry from the leftmost digit. For
two’s complement addition of two numbers, there are three cases to consider:

¢ If both numbers are positive and the result of their addition has a sign bit
of 1, then overflow has occurred; otherwise the result is correct.

¢ If both numbers are negative and the sign of the result is 0, then overflow
has occurred; otherwise the result is correct.

e If the numbers are of unlike sign, overflow cannot occur and the result is
always correct.

Fixed-Point Simulink Blocks Summation Process

Consider the summation of two numbers. Ideally, the real-world values obey
the equation

V, =%V, +V,,

where V, and V_ are the input values and V, is the output value. To see how
the summation is actually implemented, the three ideal values should be
replaced by the general [Slope Bias] encoding scheme described in “Scaling”
on page 2-5:

E.
‘/l' ZF‘LZ LQi+Bi‘

The equation in “Addition” on page 3-34 gives the solution of the resulting
equation for the stored integer, @,. Using shorthand notation, that equation
becomes

Rules for Arithmetic Operations

Q, =+F, 2Bk +F 2F"F.Q +B

net >

where F, and F, are the adjusted fractional slopes and B, , is the net bias.
The offline conversions and online conversions and operations are discussed
below.

Offline Conversions. F,, F_, and B, , are computed offline using

round-to-nearest and saturation. Furthermore, B, , is stored using the output
data type.
Online Conversions and Operations. The remaining operations are
performed online by the fixed-point processor, and depend on the slopes and
biases for the input and output data types. The worst (most inefficient)
case occurs when the slopes and biases are mismatched. The worst-case
conversions and operations are given by these steps:
1 The initial value for @, is given by the net bias, B,
Qy = B
2 The first input integer value, €,, is multiplied by the adjusted slope, F;:
QRawProduct = FspQp-

3 The previous product is converted to the modified output data type where
the slope is one and the bias is zero:

QTemp = convert (QRawProduct)

This conversion includes any necessary bit shifting, rounding, or overflow
handling.

4 The summation operation is performed:
Qa =Q, QTemp'

This summation includes any necessary overflow handling.

3-51

3 Arithmetic Operations

3-52

5 Steps 2 to 4 are repeated for every number to be summed.

It is important to note that bit shifting, rounding, and overflow handling are
applied to the intermediate steps (3 and 4) and not to the overall sum.

Streamlining Simulations and Generated Code

If the scaling of the input and output signals is matched, the number of
summation operations is reduced from the worst (most inefficient) case. For
example, when an input has the same fractional slope as the output, step 2
reduces to multiplication by one and can be eliminated. Trivial steps in the
summation process are eliminated for both simulation and code generation.
Exclusive use of binary-point-only scaling for both input signals and output
signals is a common way to eliminate mismatched slopes and biases, and
results in the most efficient simulations and generated code.

The Summation Process

Suppose you want to sum three numbers. Each of these numbers is
represented by an 8-bit word, and each has a different binary-point-only
scaling. Additionally, the output is restricted to an 8-bit word with
binary-point-only scaling of 23,

The summation is shown in the following model for the input values 19.875,
5.4375, and 4.84375.

uitd_End
18.875

Constant

uitd_End wtd End double Ijl
5.4375 -+ i Convert »
Qo Qa3
Constant1 Data Type Comnversion Display
+
uitf_EnS Qd
48427
Add
Constant2

Rules for Arithmetic Operations

Applying the rules from the previous section, the sum follows these steps:
1 Because the biases are matched, the initial value of @, is trivial:

Q, = 00000.000.

2 The first number to be summed (19.875) has a fractional slope that matches
the output fractional slope. Furthermore, the binary points and storage
types are identical, so the conversion is trivial:

), =10011.111,
QTemp =Qp-

3 The summation operation is performed:

Qy = Qu + Qremp =10011.111.

4 The second number to be summed (5.4375) has a fractional slope that
matches the output fractional slope, so a slope adjustment is not needed.
The storage data types also match, but the difference in binary points
requires that both the bits and the binary point be shifted one place to
the right:

. =0101.0111,

Qremp = convert(Q,)
@fump = 00101.011.

Note that a loss in precision of one bit occurs, with the resulting value of
QTemp determined by the rounding mode. For this example, round-to-floor
is used. Overflow cannot occur in this case because the bits and binary
point are both shifted to the right.

5 The summation operation is performed:

3-53

3 Arithmetic Operations

3-54

Qa = Qa +QTemp
10011.111
_ +00101.011
~11001.010 = 25.250.

Note that overflow did not occur, but it is possible for this operation.

6 The third number to be summed (4.84375) has a fractional slope that
matches the output fractional slope, so a slope adjustment is not needed.
The storage data types also match, but the difference in binary points
requires that both the bits and the binary point be shifted two places
to the right:

Q, =100.11011,

Qremp = convert(Qy)
Qpemp = 00100.110,

Note that a loss in precision of two bit occurs, with the resulting value of
QTemp determined by the rounding mode. For this example, round-to-floor
is used. Overflow cannot occur in this case because the bits and binary
point are both shifted to the right.

7 The summation operation is performed:

Qa = Qa + QTemp
11001.010
~ +00100.110
~11110.000 = 30.000.

Note that overflow did not occur, but it is possible for this operation.

As shown here, the result of step 7 differs from the ideal sum:

Rules for Arithmetic Operations

10011.111
0101.0111

_ +100.11011
©11110.001=30.125.

Blocks that perform addition and subtraction include the Sum, Gain, and
Discrete FIR Filter blocks.

Multiplication

The multiplication of an n-bit binary number with an m-bit binary number
results in a product that is up to m + n bits in length for both signed and
unsigned words. Most processors perform n-bit by n-bit multiplication and
produce a 2n-bit result (double bits) assuming there is no overflow condition.

Fixed-Point Simulink Blocks Multiplication Process

Consider the multiplication of two numbers. Ideally, the real-world values
obey the equation

V, =V, V..

where V, and V, are the input values and V is the output value. To see how
the multiplication is actually implemented, the three ideal values should be
replaced by the general [Slope Bias] encoding scheme described in “Scaling”
on page 2-5:

E.
Vi =F‘LZ LQi+Bi'

The solution of the resulting equation for the output stored integer, @, is
given below:

EF F B
Q, = -t cobtbEi g o +Z07c 9B -E. g
Fa F(l
F.B _ B,B,-B, _
+2cb ok, EGQC+—Z’ ;_‘ a g=E,

a a

3-55

3 Arithmetic Operations

3-56

Multiplication with Nonzero Biases and Mismatched Fractional
Slopes. The worst-case implementation of the above equation occurs when
the slopes and biases of the input and output signals are mismatched. In
such cases, several low-level integer operations are required to carry out the
high-level multiplication (or division). Implementation choices made about
these low-level computations can affect the computational efficiency, rounding
errors, and overflow.

In Simulink blocks, the actual multiplication or division operation is always
performed on fixed-point variables that have zero biases. If an input has
nonzero bias, it is converted to a representation that has binary-point-only
scaling before the operation. If the result is to have nonzero bias, the operation
is first performed with temporary variables that have binary-point-only
scaling. The result is then converted to the data type and scaling of the final
output.

If both the inputs and the output have nonzero biases, then the operation is
broken down as follows:

VlTemp =V,
V2Temp =Vy,
V3Temp = VlTempV2Temp’
Vs = V3Temp’
where

E emj

VlTemp =27 QlTemp,
E em

V2Temp =27 pQQTemp’

E em;
V3Temp =27 pQSTemp'

These equations show that the temporary variables have binary-point-only
scaling. However, the equations do not indicate the signedness, word lengths,
or values of the fixed exponent of these variables. The Simulink software
assigns these properties to the temporary variables based on the following
goals:

Rules for Arithmetic Operations

Represent the original value without overflow.

The data type and scaling of the original value define a maximum and
minimum real-world value:

E
Viax = F2 QMaxInteger +B,

E
Viin = F2 QMinInteger +B.

The data type and scaling of the temporary value must be able to represent
this range without overflow. Precision loss is possible, but overflow is never
allowed.

Use a data type that leads to efficient operations.

This goal is relative to the target that you will use for production
deployment of your design. For example, suppose that you will implement
the design on a 16-bit fixed-point processor that provides a 32-bit long,
16-bit int, and 8-bit short or char. For such a target, preserving efficiency
means that no more than 32 bits are used, and the smaller sizes of 8 or 16
bits are used if they are sufficient to maintain precision.

Maintain precision.

Ideally, every possible value defined by the original data type and scaling
is represented perfectly by the temporary variable. However, this can
require more bits than is efficient. Bits are discarded, resulting in a loss of
precision, to the extent required to preserve efficiency.

For example, consider the following, assuming a 16-bit microprocessor target:

VOriginal = QOriginal +-43.25,

where @), ginal 1s an 8-bit, unsigned data type. For this data type,

SO

QMaxInteger =225,
QMinInteger =0,

3-57

3 Arithmetic Operations

3-58

Vagar = 211.75,
VMin = —4325

The minimum possible value is negative, so the temporary variable must be a
signed integer data type. The original variable has a slope of 1, but the bias is
expressed with greater precision with two digits after the binary point. To
get full precision, the fixed exponent of the temporary variable has to be -2

or less. The Simulink software selects the least possible precision, which is
generally the most efficient, unless overflow issues arise. For a scaling of 22,
selecting signed 16-bit or signed 32-bit avoids overflow. For efficiency, the
Simulink software selects the smaller choice of 16 bits. If the original variable
is an input, then the equations to convert to the temporary variable are

uint8_T Qoriginais
uint16_ T Qg

QTemp = ((uintlﬁ_T) QOriginal 0 2) -173.

Multiplication with Zero Biases and Mismatched Fractional Slopes.
When the biases are zero and the fractional slopes are mismatched, the
implementation reduces to

EFF _
Q, = %2Eb+Ec E, Q..

a

Offline Conversions
The quantity

FyF,
FNet = F 2

a

is calculated offline using round-to-nearest and saturation. F),, is stored
using a fixed-point data type of the form

E
2 Net QNet R

Rules for Arithmetic Operations

where E,,, and @, are selected automatically to best represent I,

Online Conversions and Operations
1 The integer values @, and @, are multiplied:

QRawProduct = Qch'

To maintain the full precision of the product, the binary point of Qp_.. produes
is given by the sum of the binary points of €, and ..

2 The previous product is converted to the output data type:

QTemp = Convert(QRawProduct)

This conversion includes any necessary bit shifting, rounding, or overflow
handling. “Signal Conversions” on page 3-46 discusses conversions.

3 The multiplication
Q2 RawProduct = QTemp@Net
is performed.
4 The previous product is converted to the output data type:

Qa = Convert(QZRawProduct)

This conversion includes any necessary bit shifting, rounding, or overflow
handling. “Signal Conversions” on page 3-46 discusses conversions.

5 Steps 1 through 4 are repeated for each additional number to be multiplied.

Multiplication with Zero Biases and Matching Fractional Slopes.
When the biases are zero and the fractional slopes match, the implementation

reduces to

E +E -E
Qazz p L aQbQC.

3-59

3 Arithmetic Operations

3-60

Offline Conversions
No offline conversions are performed.
Online Conversions and Operations

1 The integer values @, and @, are multiplied:

QRawProduct = Qb Qc .

To maintain the full precision of the product, the binary point of Qp_.. produes
is given by the sum of the binary points of €, and ..

2 The previous product is converted to the output data type:

Qa = COnUert(QRawProduct)

This conversion includes any necessary bit shifting, rounding, or overflow
handling. “Signal Conversions” on page 3-46 discusses conversions.

3 Steps 1 and 2 are repeated for each additional number to be multiplied.

The Multiplication Process

Suppose you want to multiply three numbers. Each of these numbers is
represented by a 5-bit word, and each has a different binary-point-only
scaling. Additionally, the output is restricted to a 10-bit word with
binary-point-only scaling of 24. The multiplication is shown in the following
model for the input values 5.75, 2.375, and 1.8125.

Rules for Arithmetic Operations

wind_En2
575
Constant
ob
wind_End wiel0_End double —
2375 — X » double sl 27
Qc O :
Constant1 Data Type Comversion Display
w5 End | Qd
1.8125
Product
Constant2

Applying the rules from the previous section, the multiplication follows these
steps:

1 The first two numbers (5.75 and 2.375) are multiplied:

101.11
x10.011
101.11-273
101.11-272

+101.11-2!
01101.10101=13.65625.

QRawProduct =

Note that the binary point of the product is given by the sum of the binary
points of the multiplied numbers.

2 The result of step 1 is converted to the output data type:

QTemp = convert(QRawProduct)
=001101.1010 =13.6250.

“Signal Conversions” on page 3-46 discusses conversions. Note that a loss in
precision of one bit occurs, with the resulting value of @y, determined by

3-61

3 Arithmetic Operations

3-62

the rounding mode. For this example, round-to-floor is used. Furthermore,
overflow did not occur but is possible for this operation.

3 The result of step 2 and the third number (1.8125) are multiplied:

QRawProduct = 01101.1010
x1.1101
1101.1010-27%

1101.1010-272
1101.1010-271

+1101.1010-2°
0011000.10110010 = 24.6953125.

Note that the binary point of the product is given by the sum of the binary
points of the multiplied numbers.

4 The product is converted to the output data type:

Qa = Convert(QRawProduct)
=011000.1011 = 24.6875.

“Signal Conversions” on page 3-46 discusses conversions. Note that a

loss in precision of 4 bits occurred, with the resulting value of @, ,
determined by the rounding mode. For this example, round-to-floor 1s used.
Furthermore, overflow did not occur but is possible for this operation.

Blocks that perform multiplication include the Product, Discrete FIR Filter,
and Gain blocks.

Division
This section discusses the division of quantities with zero bias.

Rules for Arithmetic Operations

Note When any input to a division calculation has nonzero bias, the
operations performed exactly match those for multiplication described in
“Multiplication with Nonzero Biases and Mismatched Fractional Slopes” on
page 3-56.

Fixed-Point Simulink Blocks Division Process

Consider the division of two numbers. Ideally, the real-world values obey
the equation

Va =Vb/Vc’

where V, and V_ are the input values and V_ is the output value. To see
how the division is actually implemented, the three ideal values should be
replaced by the general [Slope Bias] encoding scheme described in “Scaling”
on page 2-5:

E.
‘/l' ZF‘LZ LQI:+BL"

For the case where the slope adjustment factors are one and the biases are
zero for all signals, the solution of the resulting equation for the output stored
integer, @,, is given by the following equation:

Q, =257 (Q,/Q.).

This equation involves an integer division and some bit shifts. If E, > E—E ,
then any bit shifts are to the right and the implementation is simple. However,
if E, < E,—E , then the bit shifts are to the left and the implementation can be
more complicated. The essential issue is that the output has more precision
than the integer division provides. To get full precision, a fractional division
1s needed. The C programming language provides access to integer division
only for fixed-point data types. Depending on the size of the numerator,

you can obtain some of the fractional bits by performing a shift prior to the
integer division. In the worst case, it might be necessary to resort to repeated
subtractions in software.

3-63

3 Arithmetic Operations

3-64

In general, division of values is an operation that should be avoided in
fixed-point embedded systems. Division where the output has more precision
than the integer division (i.e., £, < E,—FE) should be used with even greater
reluctance.

The Division Process

Suppose you want to divide two numbers. Each of these numbers is
represented by an 8-bit word, and each has a binary-point-only scaling of 2.
Additionally, the output is restricted to an 8-bit word with binary-point-only
scaling of 24,

The division of 9.1875 by 1.5000 is shown in the following model.

wind End
8.1875
Constant
)
Qb
wiod_End double —
— o double » 8125
Qa |
Data Type Comversion Display
Qc
i _End
1.5
Product
Constant1

For this example,

Qa _ 2—4—(—4)—(—4) (Qb /Qc)
=2%(Q,/Q.)-

Assuming a large data type was available, this could be implemented as

_(24Qb)
Qa _Q—ca

Rules for Arithmetic Operations

where the numerator uses the larger data type. If a larger data type was not
available, integer division combined with four repeated subtractions would
be used. Both approaches produce the same result, with the former being
more efficient.

Shifts

Nearly all microprocessors and digital signal processors support well-defined
bit-shift (or simply shift) operations for integers. For example, consider the
8-bit unsigned integer 00110101. The results of a 2-bit shift to the left and a
2-bit shift to the right are shown in the following table.

Shift Operation Binary Value Decimal Value
No shift (original number) 00110101 53

Shift left by 2 bits 11010100 212

Shift right by 2 bits 00001101 13

You can perform a shift using the Simulink Shift Arithmetic block. Use this
block to perform a bit shift, a binary point shift, or both

Shifting Bits to the Right

The special case of shifting bits to the right requires consideration of the
treatment of the leftmost bit, which can contain sign information. A shift to
the right can be classified either as a logical shift right or an arithmetic shift
right. For a logical shift right, a 0 is incorporated into the most significant
bit for each bit shift. For an arithmetic shift right, the most significant bit
is recycled for each bit shift.

The Shift Arithmetic block performs an arithmetic shift right and, therefore,
recycles the most significant bit for each bit shift right. For example, given
the fixed-point number 11001.011 (-6.625), a bit shift two places to the right
with the binary point unmoved yields the number 11110.010 (-1.75), as shown
in the model below:

3-65

3 Arithmetic Operations

3-66

=it End

h 4

sid End Ly = Qu »> 2
-5.825 B Wy =Wt 2
Ey = Eu
Constant S hift
Arithmetic

Convert

doubl

Y

-1.75

Cata Type Conversion

Display

To perform a logical shift right on a signed number using the Shift Arithmetic
block, use the Data Type Conversion block to cast the number as an unsigned
number of equivalent length and scaling, as shown in the following model.
The model shows that the fixed-point signed number 11001.001 (-6.625)

becomes 00110.010 (6.25).

uibd End

' Convert

doubk
|

=fE End uid Enl Qy=0u>=2
-8.825 ' Convert B Wy =Wt 2h
Ey=Eu
Constant D ats Type Comversiont Shift
Arithretic

Data Type Conversion

Dizplay

Conversions and Arithmetic Operations

Conversions and Arithmetic Operations

This example uses the Discrete FIR Filter block to illustrate when parameters
are converted from a double to a fixed-point number, when the input data
type is converted to the output data type, and when the rules for addition,
subtraction, and multiplication are applied. For details about conversions and
operations, refer to “Parameter and Signal Conversions” on page 3-44 and
“Rules for Arithmetic Operations” on page 3-49.

Note If a block can perform all four arithmetic operations, then the rules for
multiplication and division are applied first. The Discrete FIR Filter block
is an example of this.

Suppose you configure the Discrete FIR Filter block for two outputs, where
the first output is given by

y1 (R)=13 u(k)+11- u(k-1) -7 u(k-2),

and the second output is given by

vy (B)=6-u(k)-5-u(k-1).

Additionally, the initial values of u(k—1) and u(k—2) are given by 0.8 and 1.1,
respectively, and all inputs, parameters, and outputs have binary-point-only
scaling.

To configure the Discrete FIR Filter block for this situation, on the Main pane

of its dialog box, you must specify the Coefficients parameter as [13 11 -7;
6 -5 0] and the Initial states parameter as [0.8 1.1], as shown here.

3-67

3 Arithmetic Operations

P

Function Block Parameters: Discrete FIR Filter @
Discrete FIR Filter

Independently filter each channel of the input over time using an FIR filter. You can specify filter coefficients using
either tunable dialog parameters or separate input ports, which are useful for time-varying coefficients.

A DSP System Toolbox license is required to use a filter structure other than Direct Form.

Main Data Types

Coefficient source: [Dialog parameters 'l
Filter structure: [Direct form 'l
Coefficients: [1311-7; 68-50]

Input processing: [Elements as channels (sample based) 'l
Initial states: [0.81.1]

Sample time (-1 for inherited): -1

[oK J[Cancel H Help] Apply

Similarly, configure the options on the Data Types pane of the block dialog
box to appear as follows:

3-68

Conversions and Arithmetic Operations

P

Function Block Parameters: Discrete FIR Filter @
Discrete FIR Filter

Independently filter each channel of the input over time using an FIR filter. You can specify filter coefficients using
either tunable dialog parameters or separate input ports, which are useful for time-varying coefficients.

A DSP System Toolbox license is required to use a filter structure other than Direct Form.

Data Types

Floating-point inheritance takes precedence over the settings in the "Data Type" column below. When the block input
is floating point, all block data types match the input.

Data Type Assistant Minimum Maximum
Coefficients: fizedt(1,16) * | == 1 [1
Product output: fixedt(1,16,10) - | ==

Accumulator: [Inherit: Same as product output ==

4

4

>] t

Output: Inherit: Same as accumulator

[] Lock data type settings against changes by the fixed-point tools

Integer rounding mode: Floor ']

[T] saturate on integer overflow

[oK H Cancel H Help] Apply

The Discrete FIR Filter block performs parameter conversions and block
operations in the following order:

1 The Coefficients parameter is converted offline from doubles to the
Coefficients data type using round-to-nearest and saturation.

The Initial states parameter is converted offline from doubles to the input
data type using round-to-nearest and saturation.

2 The coefficients and inputs are multiplied together for the initial time step
for both outputs. For y,(0), the operations 13 u(0), 11-0.8, and —7 1.1 are
performed, while for y,(0), the operations 6 u(0) and —5 ‘0.8 are performed.

3-69

3 Arithmetic Operations

The results of these operations are stored as Product output.

3 The sum is carried out in Accumulator. The final summation result is
then converted to Output.

4 Steps 2 and 3 repeat for subsequent time steps.

3-70

Realization Structures

e “Realizing Fixed-Point Digital Filters” on page 4-2
e “Targeting an Embedded Processor” on page 4-4

e “Canonical Forms” on page 4-7

4 Realization Structures

4-2

Realizing Fixed-Point Digital Filters

In this section...

“Introduction” on page 4-2

“Realizations and Data Types” on page 4-2

Introduction

This chapter investigates how you can realize fixed-point digital filters using
Simulink blocks and the Simulink Fixed Point software.

The Simulink Fixed Point software addresses the needs of the control system,
signal processing, and other fields where algorithms are implemented on
fixed-point hardware. In signal processing, a digital filter is a computational
algorithm that converts a sequence of input numbers to a sequence of
output numbers. The algorithm is designed such that the output signal
meets frequency-domain or time-domain constraints (desirable frequency
components are passed, undesirable components are rejected).

In general terms, a discrete transfer function controller is a form of a digital
filter. However, a digital controller can contain nonlinear functions such as
lookup tables in addition to a discrete transfer function. This guide uses the
term digital filter when referring to discrete transfer functions.

Note To design and implement a wide variety of floating-point and
fixed-point filters suitable for use in signal processing applications and for
deployment on DSP chips, use the DSP System Toolbox software.

Realizations and Data Types

In an ideal world, where numbers, calculations, and storage of states have
infinite precision and range, there are virtually an infinite number of
realizations for the same system. In theory, these realizations are all identical.

In the more realistic world of double-precision numbers, calculations, and
storage of states, small nonlinearities are introduced by the finite precision
and range of floating-point data types. Therefore, each realization of a given

Realizing Fixed-Point Digital Filters

system produces different results. In most cases however, these differences
are small.

In the world of fixed-point numbers, where precision and range are limited,
the differences in the realization results can be very large. Therefore, you
must carefully select the data type, word size, and scaling for each realization
element such that results are accurately represented. To assist you with this
selection, design rules for modeling dynamic systems with fixed-point math
are provided in “Targeting an Embedded Processor” on page 4-4.

4-3

4 Realization Structures

Targeting an Embedded Processor

4-4

In this section...

“Introduction” on page 4-4
“Size Assumptions” on page 4-4

“Operation Assumptions” on page 4-4

“Design Rules” on page 4-5

Introduction

The sections that follow describe issues that often arise when targeting a
fixed-point design for use on an embedded processor, such as some general
assumptions about integer sizes and operations available on embedded
processors. These assumptions lead to design issues and design rules that
might be useful for your specific fixed-point design.

Size Assumptions

Embedded processors are typically characterized by a particular bit size. For
example, the terms “8-bit micro,” “32-bit micro,” or “16-bit DSP” are common.
It is generally safe to assume that the processor is predominantly geared to
processing integers of the specified bit size. Integers of the specified bit size
are referred to as the base data type. Additionally, the processor typically
provides some support for integers that are twice as wide as the base data
type. Integers consisting of double bits are referred to as the accumulator
data type. For example a 16-bit micro has a 16-bit base data type and a 32-bit
accumulator data type.

Although other data types may be supported by the embedded processor, this
section describes only the base and accumulator data types.

Operation Assumptions

The embedded processor operations discussed in this section are limited to the
needs of a basic simulation diagram. Basic simulations use multiplication,
addition, subtraction, and delays. Fixed-point models also need shifts to

do scaling conversions. For all these operations, the embedded processor

Targeting an Embedded Processor

should have native instructions that allow the base data type as inputs.
For accumulator-type inputs, the processor typically supports addition,
subtraction, and delay (storage/retrieval from memory), but not multiplication.

Multiplication is typically not supported for accumulator-type inputs because
of complexity and size issues. A difficulty with multiplication is that the
output needs to be twice as big as the inputs for full precision. For example,
multiplying two 16-bit numbers requires a 32-bit output for full precision.
The need to handle the outputs from a multiplication operation is one of the
reasons embedded processors include accumulator-type support. However, if
multiplication of accumulator-type inputs is also supported, then there is a
need to support a data type that is twice as big as the accumulator type. To
restrict this additional complexity, multiplication is typically not supported
for inputs of the accumulator type.

Design Rules

The important design rules that you should be aware of when modeling
dynamic systems with fixed-point math follow.

Design Rule 1: Only Multiply Base Data Types

It is best to multiply only inputs of the base data type. Embedded processors
typically provide an instruction for the multiplication of base-type inputs, but
not for the multiplication of accumulator-type inputs. If necessary, you can
combine several instructions to handle multiplication of accumulator-type
inputs. However, this can lead to large, slow embedded code.

You can insert blocks to convert inputs from the accumulator type to the base
type prior to Product or Gain blocks, if necessary.

Design Rule 2: Delays Should Use the Base Data Type

There are two general reasons why a Unit Delay should use only base-type
numbers:

¢ The Unit Delay essentially stores a variable’s value to RAM and, one time
step later, retrieves that value from RAM. Because the value must be in
memory from one time step to the next, the RAM must be exclusively
dedicated to the variable and can’t be shared or used for another purpose.

4-5

4 Realization Structures

4-6

Using accumulator-type numbers instead of the base data type doubles
the RAM requirements, which can significantly increase the cost of the
embedded system.

® The Unit Delay typically feeds into a Gain block. The multiplication design
rule requires that the input (the unit delay signal) use the base data type.

Design Rule 3: Temporary Variables Can Use the Accumulator
Data Type

Except for unit delay signals, most signals are not needed from one time step
to the next. This means that the signal values can be temporarily stored in
shared and reused memory. This shared and reused memory can be RAM or
it can simply be registers in the CPU. In either case, storing the value as

an accumulator data type is not much more costly than storing it as a base
data type.

Design Rule 4: Summation Can Use the Accumulator Data Type

Addition and subtraction can use the accumulator data type if there is
justification. The typical justification is reducing the buildup of errors due to
roundoff or overflow.

For example, a common filter operation is a weighted sum of several variables.
Multiplying a variable by a weight naturally produces a product of the
accumulator type. Before summing, each product can be converted back to
the base data type. This approach introduces round-off error into each part
of the sum.

Alternatively, the products can be summed using the accumulator data type,
and the final sum can be converted to the base data type. Round-off error is

introduced in just one point and the precision is generally better. The cost of
doing an addition or subtraction using accumulator-type numbers is slightly
more expensive, but if there is justification, it is usually worth the cost.

Canonical Forms

Canonical Forms

In this section...

“Canonical Forms” on page 4-7
“Direct Form II” on page 4-8
“Series Cascade Form” on page 4-12

“Parallel Form” on page 4-15

Canonical Forms

The Simulink Fixed Point software does not attempt to standardize on

one particular fixed-point digital filter design method. For example, you

can produce a design in continuous time and then obtain an “equivalent”
discrete-time digital filter using one of many transformation methods.
Alternatively, you can design digital filters directly in discrete time. After you
obtain a digital filter, it can be realized for fixed-point hardware using any
number of canonical forms. Typical canonical forms are the direct form, series
form, and parallel form, each of which is outlined in the sections that follow.

For a given digital filter, the canonical forms describe a set of fundamental
operations for the processor. Because there are an infinite number of ways
to realize a given digital filter, you must make the best realization on a
per-system basis. The canonical forms presented in this chapter optimize the
implementation with respect to some factor, such as minimum number of
delay elements.

In general, when choosing a realization method, you must take these factors
into consideration:
e Cost
The cost of the realization might rely on minimal code and data size.
¢ Timing constraints

Real-time systems must complete their compute cycle within a fixed
amount of time. Some realizations might yield faster execution speed on
different processors.

4-7

4 Realization Structures

4-8

® Qutput signal quality

The limited range and precision of the binary words used to represent
real-world numbers will introduce errors. Some realizations are more
sensitive to these errors than others.

The Simulink Fixed Point software allows you to evaluate various digital
filter realization methods in a simulation environment. Following the
development cycle outlined in “Developing and Testing Fixed-Point Systems”
on page 1-16, you can fine-tune the realizations with the goal of reducing the
cost (code and data size) or increasing signal quality. After you have achieved
the desired performance, you can use the Simulink Coder product to generate
rapid prototyping C code and evaluate its performance with respect to your
system’s real-time timing constraints. You can then modify the model based
upon feedback from the rapid prototyping system.

The presentation of the various realization structures takes into account that
a summing junction is a fundamental operator, thus you may find that the
structures presented here look different from those in the fixed-point filter
design literature. For each realization form, an example is provided using the
transfer function shown here:

_1+22:1 418522405273
1-0.52140.8422 +0.09273
(1+05:)(1+1.72 1 +272)
(140.1271)(1-0.6271 +0.922)
3.4639 -1.0916+3.00862"
1401271 1-0.6271+0.9272

Hex (Z)

=5.5656 —

Direct Form Il

In general, a direct form realization refers to a structure where the coefficients
of the transfer function appear directly as Gain blocks. The direct form

II realization method is presented as using the minimal number of delay
elements, which is equal to n, the order of the transfer function denominator.

The canonical direct form II is presented as “Standard Programming”
in Discrete-Time Control Systems by Ogata. It is known as the “Control

Canonical Forms

Canonical Form” in Digital Control of Dynamic Systems by Franklin, Powell,
and Workman.

You can derive the canonical direct form II realization by writing the
discrete-time transfer function with input e(z) and output u(z) as

1
=(by+byz L +...4b, 2™ .
(0+ b m) 1+az27 +agz “...+a,z "
ul2) ()
h(z) e(2)
The block diagram for u(z)/h(z) follows.
by
by
h(z) i o 1 b 1(z)
z z = [+
1(z) - —
Rz - bo+byz +..+b, 2

The block diagrams for A(z)/e(z) follow.

4-9

4 Realization Structures

4-10

e(z)

e(z) ~ 1) — < <

hiz) _ 1
e(@) 1+alz_l+c;1t2,z_2'+...+c;;tn,z_yJ

Combining these two block diagrams yields the direct form II diagram shown
in the following figure. Notice that the feedforward part (top of block diagram)
contains the numerator coefficients and the feedback part (bottom of block
diagram) contains the denominator coefficients.

1

bU
Ibl
bm !;:(2’) u(z)
h(2) e(z)
' = 1 s z-l _____ z_]_ - 1
_al
%
-
m
-

Canonical Forms

The direct form II example transfer function is given by

1422271418522 +0.527°
1-0.5271 +0.84272 +0.09273

Hex (Z)

The realization of H, () using fixed-point Simulink blocks is shown in the
following figure. You can display this model by typing

fxpdemo_direct_form2

at the MATLAB command line.

4-11

4 Realization Structures

ﬁ frpderno_direct_form2 EI@
File Edit View Display Diagram Simulation Analysis Code Tools Help
-8 2 He-2 4® P ® - 20 oma)| @D~
fxpdemo_direct_form2
@ |[%a|fxpdema_direct_form2 -
@ Fixed-Point Direct Form Filter
Ed
1]
=
S
Gaind 4,
b1
Gains
b2 R
o A =
To Fidt » From FixPt Cutput
Input > L > . Gomperson
+
N Unit Delay Unit Delay Unit Delay2 Gain . Surmt
Sum
Gsin3
al Qﬁ
-0.54]
Gain2
a2
0.08|
- Gaint
a3 Copyright 1390-2005 The MathiVorks Inc.
»
Ready 100% FixedStepDiscrete

Series Cascade Form

In the canonical series cascade form, the transfer function H(z) is written as a
product of first-order and second-order transfer functions:

H,(2)="C) _ b, (o) Hy (2) Hy (2). . H, (2).

This equation yields the canonical series cascade form.

4-12

Canonical Forms

(
@ S el a o e RN PP LN

Factoring H(z) into H,(z) where i = 1,2,3,...,p can be done in a number of ways.
Using the poles and zeros of H(z), you can obtain H,(z) by grouping pairs

of conjugate complex poles and pairs of conjugate complex zeros to produce
second-order transfer functions, or by grouping real poles and real zeros to
produce either first-order or second-order transfer functions. You could also
group two real zeros with a pair of conjugate complex poles or vice versa.
Since there are many ways to obtain H,(z), you should compare the various
groupings to see which produces the best results for the transfer function
under consideration.

For example, one factorization of H(z) might be

H(z)=Hy(2)Hy(2)...H,(2)

Lo1+bzt B l+ezl+fiz?

=H 1

i=1 1+ aiz_ i=j+1 1+ ciz_l + di2_2

You must also take into consideration that the ordering of the individual
H(2)’s will lead to systems with different numerical characteristics. You
might want to try various orderings for a given set of H,(2)’s to determine
which gives the best numerical characteristics.

The first-order diagram for H(z) follows.

4-13

4 Realization Structures

x(z) W E) B 3(z)

The second-order diagram for H(z) follows.

x(z) D 5 5 7 ¥z)

A

y(2) _ 1+eiz—1+ fiz‘z

x(z) 1 +ciz—1+diz‘2

The series cascade form example transfer function is given by

4-14

Canonical Forms

(14052 1) (1417271 +272)

H, (z)= .
e (2) (140.1271)(1-0.6271 +0.9272)

The realization of H, (z) using fixed-point Simulink blocks is shown in the
following figure. You can display this model by typing

fxpdemo_series_cascade_form

at the MATLAB command line.

fxpdemo_series_cascade form =)=
File Edit View Display Disgram Simulation Analysis Code Tools Help
tz-8 & e -2 4o ORgEE bomad v] Qv
fupdemo_series_cascade_form
® |[Pa]fxpdemo_series_cascade form -
Q@ Fixed-Point Series Cascade Form Filter
£
=
=] L
=
aooo Ouput
[= o W O
it To FixPt -
N
Unit Delay
Sum
Copyright 1890-2005 The MethiW orks Inc.
>
Ready 100% FixedStepDiscrete

Parallel Form

In the canonical parallel form, the transfer function H(z) is expanded into
partial fractions. H(2) is then realized as a sum of a constant, first-order, and
second-order transfer functions, as shown:

H;(z)=):K+H1(z)+H2(z)+...+Hp(z).

4-15

4 Realization Structures

This expansion, where K is a constant and the H,(z) are the first- and
second-order transfer functions, follows.

H{z)

el(z) u(z)
Hyz) ¥

H(z)

As in the series canonical form, there is no unique description for the
first-order and second-order transfer function. Because of the nature of the
Sum block, the ordering of the individual filters doesn’t matter. However,
because of the constant K, you can choose the first-order and second-order
transfer functions such that their forms are simpler than those for the series
cascade form described in the preceding section. This is done by expanding

H(z) as
J p
H(z)=K+)Y H;(2)+ Y, H;(z)
i=1 i=j+1
=K+ N L-l— S M

i=1 1+ aiz_l i=j+1 1+ CiZ_1 + dl-z_2

The first-order diagram for H(z) follows.

4-16

Canonical Forms

vz _ b

x(2) 1+a,z71

The second-order diagram for H(z) follows.

g;
f
1
x(z) ¥(z)
T s 3|z'1
-C.
1
d
1
w2y _ _ &tfiE

x(z) 1+ ciz‘l + a’iz‘z

The parallel form example transfer function is given by

3.4639 N ~1.0916 + 3.00862 1

Hex (2)25'5556_“0.12‘1 1-062 140922

4-17

4 Realization Structures

The realization of H, (z) using fixed-point Simulink blocks is shown in the
following figure. You can display this model by typing

fxpdemo_parallel_form

at the MATLAB command line.

4-18

Canonical Forms

*i fxpdemo_parallel_form EI@
File Edit View Display Diagram Simulation Analysis Code Tools Help
)| = (pl .
E-8 a m@-EH 4O ©-m @
fxpdemo_parallel_form
® | |*a|fupdemo_parallel_form -
@ Fixed-Point Paralel Form Filter
EZ
= » /K/ |_, »
Gsin2 * |§|
— S e R ey e
T . FofttoDbl % o parison
b Sum1
Convert
m— To FiPt
a
Gain
II "
Gaing 3.01 +
e
Gaing Sum3
f
-+
1 1
—*+ - L I
z z
A Unit Delayt | Unit Delay2
Sum2
Gain2
C
0.2
Gaij"‘* Copyright 1550-2005 The MathiW orks Inc:
b
Ready 100% FixedStepDiscrete

4-19

4 Realization Structures

4-20

Fixed-Point Advisor

® “Preparation for Fixed-Point Conversion” on page 5-2

® “Converting a Model from Floating- to Fixed-Point Using Simulation Data”
on page 5-14

5 Fixed-Point Advisor

Preparation for Fixed-Point Conversion

In this section...

“Introduction” on page 5-2

“Best Practices” on page 5-2

“Data Type Propagation Errors” on page 5-4
“Run the Fixed-Point Advisor” on page 5-7
“Fix a Task Failure” on page 5-8

“Manually Fixing Failures” on page 5-9
“Automatically Fixing Failures” on page 5-9
“Batch Fixing Failures” on page 5-10
“Restore Points” on page 5-10

“Save a Restore Point” on page 5-10

“Load a Restore Point” on page 5-12

Introduction

Using the Fixed-Point Advisor, you can prepare a model for conversion from a
floating-point model or subsystem to an equivalent fixed-point representation.
After preparing the model for conversion, use the Fixed-Point Tool to obtain
initial fixed-point data types and then refine these data types.

Best Practices

Use a Known Working Model

Before using the Fixed-Point Advisor, verify that update diagram succeeds
for your model. To update diagram, press Ctrl+D. If update diagram fails,
before you start converting your model, fix the failure in your model.

Back Up Your Model

Back up your Simulink model first.

Preparation for Fixed-Point Conversion

This practice provides you with a back up in case of error and a baseline for
testing and validation.

Convert Small Models

The Fixed-Point Advisor is intended to assist in converting small models.
Using larger models can result in long processing times.

Convert Subsystems

Convert subsystems within your model, rather than the entire model. This
practice saves time and unnecessary conversions.

Specify Short Simulation Run Times

Specifying small simulation run times reduces task processing times. You
can change the simulation run time in the Configuration Parameters dialog
box. For more information, see “Start time” and “Stop time” in the Simulink
Reference.

Make Small Changes to Your Model

Make small changes to your model so that you can identify where errors are
accidentally introduced.

Isolate the System Under Conversion

If you encounter data type propagation issues with a particular subsystem,
isolate this subsystem by placing Data Type Conversion blocks on the inputs
and outputs of the system. The Data Type Conversion block converts an input
signal of any Simulink software data type to the data type and scaling you
specify for its Qutput data type parameter. This practice enables you to
continue converting the rest of your model.

The ultimate goal is to replace all blocks that do not support fixed-point data

types. You must eventually replace blocks that you isolate with Data Type
Conversion blocks with blocks that do support fixed-point data types.

5-3

5 Fixed-Point Advisor

5-4

Use Lock Output Data Type Setting

You can prevent the Fixed-Point Advisor from replacing the current data
type. Use the Lock output data type setting against changes by the
fixed-point tools parameter available on many blocks. The default setting
allows replacement. Use this setting when:

® You already know the fixed-point data types that you want to use for a
particular block.

For example, the block is modeling a real-world component. Set up the
block to allow for known hardware limitations, such as restricting outputs
to integer values.

Specify the output data type of the block explicitly and select Lock output
data type setting against changes by the fixed-point tools.

® You are debugging a model and know that a particular block accepts only
certain data types.

Specify the output data type of upstream blocks explicitly and select Lock
output data type setting against changes by the fixed-point tools.

Save Simulink Signal Objects

The Fixed-Point Advisor proposes data types for Simulink signal objects in
your model. However, it does not automatically save Simulink signal objects.
To preserve changes, before closing the model, save the Simulink signal
objects 1n your workspace and model before closing the model.

Save Restore Point

Before making changes to your model that might cause subsequent update
diagram failure, consider saving a restore point. For example, before applying
proposed data types in task 3.1. For more information, see “Save a Restore
Point” on page 5-10.

Data Type Propagation Errors

The Fixed-Point Advisor is not aware of all potential scaling issues and might
propose data types that cause subsequent data propagation errors. To ensure
that you can recover your original data type settings, back up your model. For
more information, see “Best Practices” on page 5-2.

Preparation for Fixed-Point Conversion

The following models are likely to cause data type propagation issues.

Model Uses...

Fixed-Point Advisor
Behavior

Data Type Propagation
Issue

Buses

Not aware of the
minimum, maximum,
data type, and initial
value information for
bus objects.

Fixed-Point Advisor might

propose data types that are
inconsistent with the data

types for the bus object.

Simulink
parameter objects

Does not consider
any data type
information for
Simulink parameter
objects.

Fixed-Point Advisor might
propose data types that are
inconsistent with the data
types for the parameter
object.

5-5

5 Fixed-Point Advisor

5-6

Model Uses...

Fixed-Point Advisor
Behavior

Data Type Propagation
Issue

User-defined
S-functions

Not aware of
the operation
of user-defined
S-functions.

¢ The user-defined
S-function accepts only
certain input data types.
The Fixed-Point Advisor
is not aware of this
requirement and proposes
a different data type
upstream of the S-function.
Update diagram fails on
the model due to data type
mismatch errors.

¢ The user-defined
S-function specifies
certain output data
types. The Fixed-Point
Advisor is not aware of this
requirement and does not
use it. Therefore it might
propose data types that are
inconsistent with the data
types for the S-function.

User-defined
masked
subsystems

Has no knowledge of
the masked subsystem
workspace and cannot
take into account.

Fixed-Point Advisor might
propose data types that

are inconsistent with the
requirements of the masked
subsystem, particularly if
the subsystem uses mask
initialization. The proposed
data types might cause data
type mismatch errors or
overflows.

Linked subsystems

Does not include
linked subsystems
when converting your
model.

Data type mismatch errors
might occur at the linked
subsystem boundaries.

Preparation for Fixed-Point Conversion

Model Uses...

Fixed-Point Advisor
Behavior

Data Type Propagation

Issue

MATLAB Function
blocks

Does not propose data
types for MATLAB
Function blocks.

Fixed-Point Advisor might
propose data types that

are inconsistent with

the requirements of the
MATLAB Function blocks.
The proposed data types

might cause data type

mismatch errors or overflows.

Blocks whose
output is always
floating-point

for floating-point
inputs regardless
of their output data
type setting. For
example, Discrete
Filter block and
many DSP System
Toolbox blocks.

Might not propose
data types for these
blocks as they do not
allow you to set the
output data type to
double or single.

Date type propagation errors
might occur because the

Fixed-Point Advisor is unable
to lock down the output data

type of these blocks.

Run the Fixed-Point Advisor

1 Open a model.

2 Start the Fixed-Point Advisor by:

® Typing fpcadvisor ('model_name/subsystem_name') at the MATLAB

command line

Note If your model contains referenced models, you must run the
Fixed-Point Advisor on each instance of the referenced model as well

as the parent model.

5 Fixed-Point Advisor

e Selecting a subsystem and, from the menu, selecting
Analysis > Fixed-Point Tool to open the Fixed-Point Tool. On the
Fixed-Point Tool Fixed-point preparation for selected system pane,
click Fixed-Point Advisor.

¢ Right-clicking a subsystem block and, from the subsystem context
menu, selecting Fixed-Point Tool to open the Fixed-Point Tool. On
the Fixed-Point Tool Fixed-point preparation for selected system
pane, click Fixed-Point Advisor.

3 In the Fixed-Point Advisor window, on the left pane, select the Fixed-Point
Advisor folder.

4 Run the advisor by:
¢ Selecting Run to Failure from the Run menu.

¢ Right-clicking the Fixed-Point Advisor folder and selecting Run to
Failure from the folder context menu.

The Fixed-Point Advisor runs the tasks in order until a task fails. A
waitbar is displayed while each task runs.

5 Review the results. If a task fails because input parameters are not
specified, select an Input Parameter. Then continue running to failure
by right-clicking the task and selecting Continue from the context menu.
If the task fails for a different reason, fix the task as described in “Fix a
Task Failure” on page 5-8.

Fix a Task Failure

Tasks fail when there is a step for you to take to convert your model from
floating-point to fixed-point. The Fixed-Point Advisor provides guidance on
how to fix the issues.

You can fix a failure using three different methods:

¢ Follow the instructions in the Analysis Result box. Use this method to fix
failures individually. See “Manually Fixing Failures” on page 5-9.

e Use the Action box. Use this method to automatically fix all failures. See
“Automatically Fixing Failures” on page 5-9.

Preparation for Fixed-Point Conversion

e Use the Model Advisor Results Explorer. Use this method to batch fix
failures. See “Batch Fixing Failures” on page 5-10

Note A warning result is meant for your information. You can choose to fix
the reported issue or move on to the next task.

Manually Fixing Failures

All checks have an Analysis Result box that describes the recommended
actions to manually fix failures.

To manually fix warnings or failures within a task:

1 Optionally, save a restore point so you can undo the changes that you
make. For more information, see “Save a Restore Point” on page 5-10.

2 In the Analysis Result box, review the recommended actions. Use the
information to make changes to your model.

3 To verify that the task now passes, in the Analysis box, click Run This
Task.

Automatically Fixing Failures

You can automatically fix failures using the Action box. The Action box
applies all of the recommended actions listed in the Analysis Result box.

Caution Prior to automatically fixing failures, review the Analysis Result
box to ensure that you want to apply all of the recommended actions.

Automatically fix all failures within a task using the following steps:

1 Optionally, save a restore point so you can undo the changes that you
make. For more information, see “Save a Restore Point” on page 5-10.

2 In the Action box, click Modify All.

The Action Result box displays a table of changes.

5-9

5 Fixed-Point Advisor

3 To verify that the task now passes, in the Analysis box, click Run This
Task.

Batch Fixing Failures

If a task fails and you want to explore the results and make batch changes,
use the following steps.

1 Optionally, save a restore point so you can undo the changes that you
make. For more information, see “Save a Restore Point” on page 5-10.

2 In the Analysis box, click Explore Result.
3 Use the Model Advisor Result Explorer to modify block parameters.

4 When you finish making changes, in the Fixed-Point Advisor window, click
Run This Task to see if the changes you made result in the task passing.
Continue fixing failures and rerunning the task until the task passes.

Restore Points

The Fixed-Point Advisor provides a model and data restore point capability for
reverting changes that you made in response to advice from the Fixed-Point
Advisor. A restore point is a snapshot in time of the model, base workspace,
and Fixed-Point Advisor.

Caution A restore point saves only the current working model, base
workspace variables, and Fixed-Point Advisor tree. It does not save other
items, such as libraries and referenced submodels.

To learn how to save a restore point, see “Save a Restore Point” on page 5-10.

To learn how to load a restore point, see “Load a Restore Point” on page 5-12.

Save a Restore Point

When to Save a Restore Point
Consider saving a restore point:

5-10

Preparation for Fixed-Point Conversion

® Before applying changes to your model that might cause update diagram
failure. For example, before applying proposed data types in task 3.1.

® Before attempting to fix failures.

How to Save a Restore Point

You can save a restore point and give it a name and optional description, or
allow the Fixed Point Advisor to automatically name the restore point for you.

To save a restore point with a name and optional description:

1 From the main menu, select File > Save Restore Point As.

Fixed-Point Advisor: Save Model and Data Restore Point - fxpdemo_fpa/Controller System @

No restore point saved.

Hame Description Time

Name: RestorePointl Description:

Delete [Cancel][Help]

2 In the Save Model and Data Restore Point dialog box, in the Name
field, enter a name for the restore point.

3 In the Description field, you can optionally add a description to help you
identify the restore point.

4 Click Save.

The Fixed Point Advisor saves a restore point of the current model, base
workspace, and Fixed Point Advisor status.

5-11

5 Fixed-Point Advisor

5-12

Note To quickly save a restore point, go to File > Save Restore Point.
The Fixed Advisor saves a restore point with the name autosaven. n is the
sequential number of the restore point. If you use this method, you cannot
change the name of, or add a description to, the restore point.

Load a Restore Point

When to Load a Restore Point
Load a restore point when:

® A task fails and you cannot continue the conversion. In this case, load a
restore point saved earlier in the run to avoid rerunning all the previous
tasks.

® You want to revert changes you made in response to advice from the
Fixed-Point Advisor.

How to Load a Restore Point
To load a restore point:

1 Go to File > Load Restore Point.

Fixed-Point Advisor: Load Model and Data Restore Point - fxpdemo_fpa/Controller System @

Select a restore point to load.

Hame Description Time

RestorePointl fxpdemo_fpa task 1.3 03-May-2012 13:30:12

Load ” Delete ” Cancel ” Help

Preparation for Fixed-Point Conversion

2 In the Load Model and Data Restore Point dialog box, select the restore
point that you want.

3 Click Load.

The Model Advisor issues a warning that the restoration will overwrite
the current model and workspace.

4 Click Load to load the restore point that you selected.

The Fixed Point Advisor reverts the model, base workspace, and Fixed
Point Advisor status.

5-13

5 Fixed-Point Advisor

Converting a Model from Floating- to Fixed-Point Using
Simulation Data

In this section...

“About This Example” on page 5-14

“Starting the Preparation” on page 5-14

“Preparing Model for Conversion” on page 5-15

“Prepare for Data Typing and Scaling” on page 5-20

“Propose Data Types Based on the Simulation Reference Run” on page 5-23
“Apply the New Fixed-Point Data Types” on page 5-23

“Simulate the Model Using New Fixed-Point Settings” on page 5-24

About This Example

This example steps you through using the Fixed-Point Advisor to prepare the
fxpdemo_fpa model for conversion from using floating-point data types to
using fixed-point data types. This example shows you how to:

Set model-wide configuration options.

Set block-specific parameters.

Obtain an initial fixed-point data types for the model.

Validate the fixed-point data types against the floating-point model.

Starting the Preparation

1 Open the model. At the command line, enter: fxpdemo_fpa.

5-14

Converting a Model from Floating- to Fixed-Point Using Simulation Data

2 To start the conversion:

a Right-click Controller System and, from the subsystem context menu,
select Fixed-Point Tool.

b On the Fixed-Point Tool Fixed-point preparation for selected
system pane, click the Fixed-Point Advisor button.

The Fixed-Point Advisor opens for the subsystem Controller System.

Preparing Model for Conversion

First, validate model-wide settings and create reference simulation data.

1 For the purpose of this tutorial, run the tasks in the Fixed-Point Advisor
Prepare Model for Conversion folder one at a time. In the left pane,
select Verify model simulation settings and, in the right pane, click
Run This Task.

This task validates that model simulation settings allow signal logging and

disable data type override to facilitate conversion to fixed point. These
settings ensure that fixed-point data can be logged in downstream tasks.

5-15

5 Fixed-Point Advisor

The task passes.
2 Select and run Verify update diagram status.

Your model must be able to successfully complete an update diagram action
to run the checks in the Fixed-Point Advisor.

The task passes.
3 Select and run Address unsupported blocks.

This task identifies blocks that do not support fixed-point data types.

The Fixed-Point Advisor cannot convert these blocks. To complete the
conversion of your model, replace these blocks with Simulink built-in
blocks that do support fixed-point data types. If a replacement block is not
available, you can temporarily isolate the unsupported block with Data
Type Conversion blocks.

The task fails because the model contains a block that does not support
fixed-point data types.

4 Fix the failure by replacing the TrigFcn block with the provided
replacement:
a Click the Preview link to view the replacement block.

b Click the link to the original block and view its settings.

¢ Double-click the replacement block and verify its settings match the
settings of the original block.

Note If the settings on the replacement block differ from the settings
on the original block, set up the replacement block to match the original
block.

d In the Controller System subsystem, right-click the original TrigFcn
block. From the context menu, select Replace with Lookup Table.

The Fixed-Point Advisor replaces the original block.
e In the Fixed-Point Advisor, rerun the task. The task passes.

5-16

Converting a Model from Floating- to Fixed-Point Using Simulation Data

5 Select and run Set up signal logging. Because you are using simulation
minimum and maximum data, you must specify at least one signal to use
in analysis and comparison in downstream checks. At a minimum, you
should log the unique input and output signals.

The task runs and the Fixed-Point Advisor warns that signal logging is
not specified for any signals.

6 Because you want to propose data types based on simulation data, fix the
warning:

a Click the Explore Result button.

b In the Model Advisor Result Explorer, select the signals that you want to
log and select the EnableLogging check box.

For this tutorial, log the signals connected to the Inport and Outport
blocks:

® Ctr_in

e Ctr_out
¢ Close the Model Advisor Result Explorer.
d In the Fixed-Point Advisor, rerun the task.

The task passes because signal logging is enabled for at least one signal.

7 Select and run Create simulation reference data. The Fixed-Point
Advisor simulates the model using the current solver settings, and creates
and archives reference signal data to use for analysis and comparison in
later conversion tasks.

The task runs and the Fixed-Point Advisor warns that logging is not
enabled.

If the simulation is set up to have a long simulation time, after starting
this task, you can stop the simulation by selecting the waitbar and then
pressing Ctrl+C. This allows you to change the simulation time and
continue without waiting for the long simulation.

8 To fix the failure, in the Action box click Modify All.

5-17

5 Fixed-Point Advisor

5-18

10

The Modify All action configures the model to the settings recommended
in the Analysis Result. The Action Result box displays a table of changes.

Note Prior to automatically fixing failures, you should review the
Analysis Result box to ensure that you want to apply all the recommended
actions.

Click the Run This Task button.

The task passes and the tool stores the results in a run named
FPA_Reference. You can view these results in the Fixed-Point Tool
Contents pane.

Open the Verify Fixed-Point Conversion Guidelines folder. Select and
run Check model configuration data validity diagnostic parameters
settings. This task verifies that the Model Configuration Parameters
> Diagnostics > Data Validity > Parameters options are all set to
warning. If these options are set to error, the model update diagram
action fails in later tasks.

The task passes.

Select and run Implement logic signals as Boolean data. This task
verifies that Model Configuration Parameters > Optimization >
Implement logic signals as Boolean data is selected. If it is cleared, the
code generated in downstream checks is not optimized.

The task passes.

Converting a Model from Floating- to Fixed-Point Using Simulation Data

12

13

14

15

Select and run Check for proper bus usage. This task identifies:
e Mux blocks that are bus creators

® Bus signals that the top-level model treats as vectors

Note This is a Simulink check. For more information, see “Check for
proper bus usage” in the Simulink documentation.

The task passes.

Select and run Simulation range checking. This tasks verifies that
the Model Configuration Parameters > Diagnostics > Simulation
range checking option is not set to none. A warning is displayed because
Simulation range checking is currently set to none. The recommended
setting is warning so that warnings are generated when signals exceed the
specified minimum or maximum values.

Fix the warning by applying the recommended setting using the Modify
All button. Rerun the task.

The task passes.

Select and run Check for implicit signal resolution. This task checks
for models that use implicit signal resolution. To use the Fixed-Point
Advisor for Simulink signal object scaling, turn off implicit signal resolution
by setting the Diagnostics > Data Validity > Signal resolution
property in the Configuration Parameters dialog box to Explicit only.
Enforce resolution for each of the signals and states that currently resolve
successfully. For more information, see “Signal resolution” in the Simulink
documentation.

The task passes because the model contains no Simulink signal objects.

The run to failure action has completed for the Prepare Model for
Conversion folder. At this point, you can review the results report found at
the folder level, or continue to the next folder.

5-19

5 Fixed-Point Advisor

5-20

Prepare for Data Typing and Scaling

The tasks in this folder prepare the model for automatic data typing by the
Fixed-Point Tool. This folder contains tasks that set the block configuration
options and output minimum and maximum values for blocks. The block
settings from this task simplify the initial data typing and scaling. The
optimal block configuration is achieved in later stages.

Right-click Prepare for Data Typing and Scaling and select Run to
Failure.

The Fixed-Point Advisor runs the Review locked data type settings
task. This task identifies blocks that have their data type settings locked
down, which excludes them from automatic data typing.

The task passes because it finds no blocks with locked data types.

The Fixed-Point Advisor runs the Remove output data type inheritance
task. This task identifies blocks with the OQutput data type property set to
Inherit. Inherited data types might lead to data type propagation errors.

The task fails because some blocks in the model have inherited output
data types.

Fix the failure using the Modify All button to explicitly configure the
output data types to the recommended values. Rerun the task.

The task passes.

Continue running to failure. Relax input data type settings runs. This
task i1dentifies blocks with input data type constraints that might lead to
data type propagation errors.

The task passes because all blocks have flexible input data types.

5 Verify Stateflow charts that have strong data typing with Simulink

runs. This task verifies that all Stateflow charts are configured to have
strong data typing with Simulink I/O.

The task passes because the model does not have any Stateflow charts.

Converting a Model from Floating- to Fixed-Point Using Simulation Data

6 Remove redundant specification between signal objects and blocks

runs. This task identifies and removes redundant data type specification
originating from blocks and Simulink signal objects.

The task passes because the model contains no resolved Simulink signal
objects.

7 Verify hardware selection runs. This task identifies the hardware

device information on the Hardware Implementation pane of the
Configuration Parameters dialog box.

The task fails because the Model Configuration Parameters >
Hardware Implementation option does not provide values for the
Device vendor and Device type parameters.

8 Fix the failure:

a Click the Hardware Implementation Device settings link.

b In the Configuration Parameters dialog box Hardware
Implementation pane, change:

® Device vendor to Generic
* Device type to 32-bit Embedded Processor
¢ Click OK to apply the settings.

9 In the Fixed-Point Advisor window, rerun the task.

The task fails because you must specify a default data type for floating-point
data types that is suitable for the chosen hardware.

10 Fix the failure by setting Default data type for all floating-point

signals to int16.

The software uses this default data type for all output signals. The
Fixed-Point Advisor proposes the Same as embedded hardware integer
setting, which is int32. However, use int16 because the model performs
many multiplications and you want the product to fit into int32.

Rerun the task.

The task passes.

5-21

5 Fixed-Point Advisor

5-22

12

13

14

15

Select and run Specify block minimum and maximum values.

The Fixed-Point Advisor warns you that you have not specified any
minimum and maximum values. Optimally, specify block output and
parameter minimum and maximum values for, at minimum, the Inport
blocks in the system. You can specify the minimum and maximum values
for any block in this step. Typically, these values are determined during
the design process based on the system that you are creating.

Fix the warning by specifying minimum and maximum values for Inport
blocks:

a Click the Explore Result button.

The Model Advisor Result Explorer opens, displaying the Inport blocks
that do not have an output minimum and maximum specified.

b On the Model Advisor Result Explorer center pane, select Ctr_in. For
the purpose of this tutorial, specify the output minimum and maximum
values for this block. Set OutMin to -5 and set OutMax to 5.

¢ Close the Model Advisor Result Explorer.
d In the Fixed-Point Advisor, rerun the task.

The task passes because minimum and maximum values are specified
for all Inport blocks.

e For the purpose of this tutorial, do not specify other minimum and
maximum values for other blocks.

f Review the results report found at the folder level.

Select and run Return to the Fixed-Point Tool to perform data
typing and scaling.

On the Fixed-Point Tool Contents pane, examine the results for the
simulation reference run. One of the TrigFcn block outputs overflowed
multiple times, indicating that the fixed-point settings on this block are
not suitable for the input range. To refine the fixed-point data types,
first run the model with a global override of the fixed-point data types
using double-precision numbers to avoid quantization effects. This action
provides a floating-point benchmark that represents the ideal output.
Then, propose new data types based on these “ideal” results.

Converting a Model from Floating- to Fixed-Point Using Simulation Data

Propose Data Types Based on the Simulation
Reference Run

Use the Fixed-Point Tool to propose fixed-point data types based on the
simulation reference (FPA_Reference) run.

1 In the Fixed-Point Tool:

a Click the Propose fraction lengths button Ol
b Because you are proposing data types based on fixed-point results, the
tool issues a warning. In the warning dialog box, click Yes.

The Fixed-Point Tool proposes new data types for objects in the model
and updates the results on the Contents pane.

2 In the Fixed-Point Tool, set the Column View to Automatic Data Typing
with Simulation Min/Max View to display information relevant to the
proposal. The tool displays the proposed scaling in the ProposedDT
column in the Contents pane.

To accommodate the full simulation range, the Fixed-Point Tool proposes
new data types for some blocks in the model. Because the TrigFcn block is
a linked library, the tool does not propose new data types for this block.

3 Examine the results to resolve any conflicts and to ensure that you want
to accept the proposed data type for each result.

In the Fixed-Point Tool toolbar, select Show > Conflicts with proposed
data types.

The Fixed-Point Tool detects no conflicts, so you are ready to apply the
new data types as described in “Apply the New Fixed-Point Data Types”
on page 7-24.

Apply the New Fixed-Point Data Types
1 Click Apply accepted fraction lengths to write the proposed data types

to the model.
&

5-23

5 Fixed-Point Advisor

5-24

2 In the Fixed-Point Tool toolbar, select Show > All results.

The tool has set all the specified data types to the proposed types.

Simulate the Model Using New Fixed-Point Settings

1 On the Shortcuts to set up runs pane, click the Model-wide no
override and full instrumentation button to use the locally specified
data type settings.

2 On the Fixed-Point Tool Model Hierarchy pane, select the Controller
Subsystem.

3 Click Simulate to run the simulation.

The Simulink software simulates the model using the new fixed-point
settings that you applied in the previous step and stores the results in
the NoOverride run.

4 Examine the results. Because the tool did not propose new data types for
the TrigFcn block, this block still overflows.

Fixed-Point Tool

e “Overview of the Fixed-Point Tool” on page 6-2
¢ “Run Management” on page 6-5
® “Debug a Fixed-Point Model” on page 6-12

® “Logging Simulation Minimum and Maximum Values for Referenced
Models” on page 6-19

¢ “Log Simulation Minimum and Maximum Values for Referenced Models”
on page 6-22

® “Propose Data Types for a Referenced Model” on page 6-28

® “Logging Simulation Minimum and Maximum Values for a MATLAB
Function Block” on page 6-32

¢ “Log Simulation Minimum and Maximum Values for a MATLAB Function
Block” on page 6-33

¢ “View Signal Names in the Fixed-Point Tool” on page 6-36

6 Fixed-Point Tool

Overview of the Fixed-Point Tool

In this section...

“Introduction to the Fixed-Point Tool” on page 6-2

“Using the Fixed-Point Tool” on page 6-2

Introduction to the Fixed-Point Tool

The Fixed-Point Tool is a graphical user interface that automates specifying
fixed-point data types in a model. The tool collects range data for model
objects. The range data comes from either design minimum and maximum
values that objects specify explicitly, from logged minimum and maximum
values that occur during simulation, or from minimum and maximum values
derived using range analysis. Based on these values, the tool proposes
fixed-point data types that maximize precision and cover the range. With this
too, you can review the data type proposals and then apply them selectively to
objects in your model.

Fixed-Point Tool Capability More Information

Deriving range information based on | “Derive Ranges”
specified design range

Proposing data types based on “Conversion Using Simulation Data”

simulation data

Proposing data types based on “Conversion Using Range Analysis”

derived ranges

Proposing data types based on “Propose Data Types Using Multiple

simulation data from multiple runs | Simulations” on page 9-63

Debugging fixed-point models “Debug a Fixed-Point Model” on
page 6-12

Using the Fixed-Point Tool
To open the Fixed-Point Tool, use any of the following methods:

¢ From the Simulink Analysis menu, select Fixed-Point Tool.

Overview of the Fixed-Point Tool

®* From the model context menu, select Fixed-Point Tool.

® From a subsystem context menu, select Fixed-Point Tool.

If you want to open the tool programmatically, use the fxptdlg function.
For more information, see fxptdlg.

The Fixed-Point Tool contains the following components:

® Model Hierarchy pane — Displays a tree-structured view of the Simulink
model hierarchy.

¢ Contents pane — Displays a tabular view of objects that log fixed-point
data in a system or subsystem.

® Dialog pane — Displays parameters for specifying particular attributes
of a system or subsystem, such as its data type override and fixed-point
instrumentation mode.

® Toolbar — Provides buttons for commonly used Fixed-Point Tool commands.

¢ Shortcut Editor — To open the Shortcut Editor, on the far right-hand
pane, click the Add/Edit shortcuts link. This editor provides the ability
to configure shortcuts that set up the run name as well as model-wide
data type override and instrumentation settings prior to simulation or
range derivation. For more information, see “Run Management with the
Shortcut Editor” on page 6-5.

For more information about each of these components, see fxptdlg.

6-3

6 Fixed-Point Tool

m
L e — | |

pan | contents of: fextema_feedack famo-dt)]
4 W6 tpatna teemad nna-doy
2] controter G e (St 7| BxmDetaks [

Name | Run ComphedDY SpecfledOT SimMir Smbu Designhlin Desgrilas OverflowWraps Saturations
' Shortiuts t et runs

[e——
@ Mesdel wide 1o rverride and fll itrumentaton.
Agafat o

Settrgs for pmiected gvitem

Feueed gl nrumentatin sode:

Bk =] [Mneeic e -4--;

Dats colecton.

Sore reslls in nn: DoubleCrverride.

(@] smusste
]

Derte s vibes fr seected yatem
7] bt it wih oot euss
Automate data ypeg for sected epstan

(1] sropons sactemienges Configae..,
[108] et scseptod facton et

(@] shom et for s reuit

Q Croet] (i) [oo

6-4

Run Management

Run Management

In this section...

“About Run Management” on page 6-5

“Why Use Shortcuts to Manage Runs” on page 6-7

“When to Use Shortcuts to Manage Runs” on page 6-7

“Add Shortcuts” on page 6-8

“Edit Shortcuts” on page 6-9

“Delete Shortcuts” on page 6-10

“Capture Current Model Settings Using the Shortcut Editor” on page 6-10

About Run Management

The Fixed-Point Tool supports multiple runs. Each run uses one set of model
settings to simulate the model or to derive or propose data types. You can:

Store multiple runs.

Specify custom run names.

Propose data types based on the results in any run.

Apply data type proposals based on any run.
® Compare the results of any two runs.

® Rename runs directly in the Fixed-Point Tool Contents pane.

You can easily switch between different run setups using shortcuts.
Alternatively, you can manually manage runs.

Run Management with the Shortcut Editor

You can use shortcuts prior to simulation to configure the run name as well
as to configure model-wide data type override and instrumentation settings.
The Fixed-Point Tool provides:

6 Fixed-Point Tool

6-6

® Frequently used factory default shortcuts, such as Model-wide double

override and full instrumentation, which sets up your model so that
you can override all fixed-point data types with double-precision numbers
and logs the simulation minimum and maximum values and overflows.

Note You can set up user-defined shortcuts across referenced model
boundaries. The factory default shortcuts apply only to the top-level model
and so do not affect the settings of any referenced model.

The ability to add and edit custom shortcuts. The shortcuts are saved with
the model so that you define them once and then reuse them multiple times.
Use the Shortcut Editor to create or edit shortcuts and to add and organize
shortcut buttons in the Fixed-Point Tool Shortcuts to set up runs pane.

Note You can use user-defined shortcuts across referenced model
boundaries.

Manual Run Management
You can also manually manage runs using the following settings:

In the Data collection pane, Store results in run.

Provide a new run name before a simulation or collecting derived minimum
and maximum values so that you do not overwrite existing runs.

In the Settings for selected system pane:
= Fixed-point instrumentation mode
= Data type override

= Data type override applies to

Run Management

Why Use Shortcuts to Manage Runs

Shortcuts provide a quick and easy way to set up data type override and
fixed-point instrumentation settings run prior to simulation or range
derivation. You can associate a run name with each shortcut. When you apply
a shortcut, you change the data type override and fixed-point instrumentation
settings of multiple systems in your hierarchy simultaneously.

Shortcuts:

¢ Simplify the workflow. For example, you can collect a floating-point
baseline in a clearly named run.

¢ Provide the ability to configure data type override and instrumentation
settings on multiple subsystems in the model hierarchy at the same time.
This capability is useful for models that have a complicated hierarchy.

® Are a convenient way to store frequently used settings and reuse them.
This capability is useful when switching between different settings during
debugging.

® Provide a way to store the original fixed-point instrumentation and
data type override settings for the model. Preserving these settings in a
shortcut provides a backup in case of failure and a baseline for testing
and validation.

When to Use Shortcuts to Manage Runs

To ... Use...

Autoscale your entire model The factory default shortcuts.
These defaults provide an efficient
way to override the model with
floating-point data types or remove
existing data type overrides. For
more information, see “Propose

6 Fixed-Point Tool

6-8

To ...

Use...

Fraction Lengths Using Simulation
Range Data” on page 9-45.

Debug a model

Shortcuts to switch between different
data type override and fixed-point
instrumentation modes. For

more information, see “Debug a
Fixed-Point Model” on page 6-12.

Manage the settings on multiple
systems in a model. For example,
if you are converting your model to

fixed point one subsystem at a time.

The Shortcut Editor to define your
own shortcuts so that you can switch
between different settings without
manually changing individual
settings each time.

Capture the initial settings of the
model before making any changes
to it.

The Shortcut Editor to capture the
model settings and save them in a
named run. For more information,
see “Capture Current Model Settings
Using the Shortcut Editor” on page
6-10.

Add Shortcuts

1 On the Fixed-Point Tool Shortcuts to set up runs pane, click Add/Edit

shortcuts.

2 For each subsystem that you want to specify a shortcut for, on the Shortcut
Editor Model Hierarchy pane, select the subsystem:

a In the Name of shortcut field, enter the shortcut name.

By default, if Allow modification of run name is selected, the
software sets the Run name to the shortcut name. You can manually

override the name.

b Edit the shortcut properties. See “Edit Shortcuts” on page 6-9.

Run Management

Edit Shortcuts

1 On the Fixed-Point Tool Shortcuts to set up runs pane, click Add/Edit
shortcuts.

2 In the Shortcut Editor, from the Name of shortcut list, select the shortcut
that you want to edit.

The editor displays the run name, fixed-point instrumentation settings,
and data type override settings defined by the shortcut.

Note You cannot modify the factory default shortcuts.

3 If you do not want this shortcut to modify the existing fixed-point
instrumentation settings on the model, clear Allow modification of
fixed-point instrumentation settings.

4 If you do not want this shortcut to modify the existing data type override
settings on the model, clear Allow modification of data type override
settings.

5 If you do not want this shortcut to modify the run name on the model, clear
Allow modification of run name.

6 If you want to modify the shortcut for a subsystem:
a Select the subsystem.

b If applicable, set the Fixed-point instrumentation mode to use when
you apply this shortcut.

¢ If applicable, set the Data type override mode to use when you apply
this shortcut.

d If applicable, set the Run name to use when you apply this shortcut.
e Click Apply.

7 Repeat step 6 to modify any subsystem shortcuts that you want.

6-9

6 Fixed-Point Tool

6-10

8 Optionally, if you want the Fixed-Point Tool to display a button for this new
shortcut, use the right arrow to move the shortcut to the list of shortcuts to
display. Use the up and down arrows to change the order of the shortcut
buttons.

9 Save the model to store the shortcut with the model.

Delete Shortcuts

To delete a shortcut from a model:

1 On the Fixed-Point Tool Shortcuts to set up runs pane, click Add/Edit
shortcuts.

2 On the Shortcut Editor Manage shortcuts pane, in the Shortcuts table,
select the shortcut that you want to delete.

3 Click the Delete selected shortcut button, ‘i/

Capture Current Model Settings Using the Shortcut
Editor

1 On the Fixed-Point Tool Shortcuts to set up runs pane, click Add/Edit
shortcuts.

2 In the Shortcut Editor, create a new shortcut, for example, Initial
subsystem settings.

By default, if Allow modification of run name is selected, the software
sets the Run name to the shortcut name. You can manually override
the name.

3 Verify that Allow modification of fixed-point instrumentation
settings and Allow modification of data type override settings are
selected.

4 Click Capture system settings.

The software sets the Fixed-point instrumentation mode, Data type
override, and, if appropriate, Data type override applies to for the
systems in the model hierarchy.

Run Management

5 Click Apply.

6 Save the model to store the shortcut with the model.

6-11

6 Fixed-Point Tool

Debug a Fixed-Point Model

6-12

In this section...

“Simulating the Model to See the Initial Behavior” on page 6-12
“Debugging the Model” on page 6-14

“Simulating the Model Using a Different Input Stimulus” on page 6-16
“Debugging the Model with the New Input” on page 6-17

“Proposing Fraction Lengths for Math2 Based on Simulation Results” on
page 6-17

“Verifying the New Settings” on page 6-18

This example shows how to:

¢ Identify which parts of a model cause numeric problems.

The current fixed-point settings on this model cause overflows. You debug
the model by overriding the fixed-point settings on one subsystem at a
time and simulating the model to determine how these fixed-point settings
affect the model behavior.

¢ (Create and use shortcuts to set up fixed-point instrumentation and data
type override settings for different runs.

To optimize the model for two different inputs, you switch several times
between different data type override and fixed-point instrumentation
settings. Using shortcuts facilitates changing these settings.

e Autoscale the model over the complete simulation range for both inputs.

Simulating the Model to See the Initial Behavior

Initially, the input to the Gain block is a sine wave of amplitude 7. Simulate
the model using local system settings with logging enabled to see if any
overflows or saturations occur.

1 Open the ex_fixedpoint_debug model. At the MATLAB command line,
enter:

Debug a Fixed-Point Model

addpath(fullfile(docroot, 'toolbox', 'fixpoint', 'examples'))

ex_fixedpoint_debug

'bi ex_fixedpoint_debug EI@
File View Display Diagram Simulation Analysis Code Tools Help
]| = (pl 253
- S @2 4 » » (D~ v
ex_fixedpoint_debug
® || Pa|ex_fixedpoint_debug ¥ -
@
E3 .
ni -
= Chirp Signat2 - m“” * “mn G ! 1
Py In2 Cutt
=
Chirp Signalt 2 b
Corstant’ Manua Swich Gain
Sine Wawe1
» N
Ready 86% FiedStepDiscrete

2 From the model Analysis menu, select Fixed-Point Tool.

3 In the Fixed-Point Tool, set up a shortcut for the initial system settings:

a On the Shortcuts to set up runs pane, click Add/Edit shortcuts.

b In the Shortcut Editor:
i On the Model Hierarchy pane, select subsysA>Math1.

ii In the Name of shortcut field, enter Setting A.

The editor sets the Run name for this shortcut to Setting A.

iii Set Fixed-point instrumentation mode to Minimums, maximums

and overflows.

6-13

6 Fixed-Point Tool

6-14

iv Set Data type override to Use local settings.
v Click Apply.

vi On the Model Hierarchy pane, select subsysA>Math2 and repeat
steps (111) to (v).

vii On the Manage shortcuts pane, under Shortcuts, select Setting
A then click the right arrow to move this shortcut to the list of
shortcuts displayed in the Fixed-Point Tool.

4 Use this shortcut to set up a run. Use the settings to simulate the model.

a On the Fixed-Point Tool Model Hierarchy pane, select
ex_fixedpoint_debug.

b On the Shortcuts to set up runs pane, click Setting A.
¢ Click the Simulate button, @

The Simulink software simulates the model using the fixed-point
instrumentation and data type settings specified in Setting A.
Afterward, on the Contents pane, the Fixed-Point Tool displays the
simulation results for each block that logged fixed-point data. The tool
stores the results in the run named Setting A. The Fixed-Point tool
highlights subsysB/Math2/Add1:0Qutput in red to indicate that there
1s an issue with this result. The OverflowWraps column for this
result shows that the block overflowed 51 times, which indicates a poor
estimate for its scaling.

Debugging the Model

To debug the model, first simulate the model using local settings on

the subsystem Math1 while overriding the fixed-point settings on Math2
with doubles. Simulating subsystem Math2 with doubles override avoids
quantization effects for this subsystem. If overflows occur, you can deduce
that there are issues with the fixed-point settings in subsystem Math1.

Next, simulate the model using local settings on Math2 and doubles override
on Math1. If overflows occur for this simulation, there are problems with the
fixed-point settings for subsystem Math2.

Debug a Fixed-Point Model

Setting Up Shoricuts

1 Use the Shortcut Editor to create the following new shortcuts.

Shortcut Subsystem | Fixed-point Data type Data type
Name instrumentation mode override override applies
fo
Setting B Math1 MinMaxAndOverflow Use local N/A
settings
Math2 MinMaxAndOverflow Double All numeric types
Setting C Math1 MinMaxAndOverflow Double All numeric types
Math2 MinMaxAndOverflow Use local N/A
settings

2 On the Manage shortcuts pane, add Setting B and Setting C to the list
of buttons to display in the Fixed-Point Tool.

Testing Subsystem Math1 Settings
Simulate the model with original fixed-point settings on Math1 while

overriding the fixed-point settings with doubles on Math2.

1 On the Fixed-Point Tool Model Hierarchy pane, select
ex_fixedpoint_debug.

2 On the Shortcuts to set up runs pane, click Setting B to override
fixed-point settings on Math2.

3 Click the Simulate button.

The Simulink software simulates the model using the fixed-point
instrumentation and data type settings specified in Setting B, using
fixed-point settings for Math1 and overriding the fixed-point settings for
Math2. No overflows occur, which indicates that the settings on Math1 are
not causing the overflows.

6-15

6 Fixed-Point Tool

Testing Subsystem Math2 Settings

Simulate with original fixed-point settings on Math2 while overriding the
fixed-point settings with doubles on Mathi.

1 On the Fixed-Point Tool Model Hierarchy pane, select
ex_fixedpoint_debug.

2 On the Shortcuts to set up runs pane, click Setting C to override the
fixed-point settings on Matht.

3 Click the Simulate button.

The Simulink software simulates the model using the fixed-point
instrumentation and data type settings specified in Setting C, using
fixed-point settings for Math2 and overriding the fixed-point settings for
Math1. Overflows occur in run Setting C, indicating that the settings
on Math2 are causing the overflows.

Simulating the Model Using a Different Input Stimulus

Simulate the model with a different input using the original fixed-point
settings on subsystems Math1 and Math2. Because you set up a shortcut for
this initial set up, before rerunning the simulation, you can easily configure
the model. Before simulating, select to merge the simulation results so that
the tool gathers the simulation range for both inputs.

1 On the Data collection pane, select Merge instrumentation results
from multiple simulations.

2 In the ex_fixedpoint_debug model, double-click the Manual Switch block
to select Chirp Signali as the input to the Gain block.

3 On the Fixed-Point Tool Model Hierarchy pane, select
ex_fixedpoint_debug and simulate using the original fixed-point settings
for Math1 and Math2.

a On the Shortcuts to set up runs pane, click Setting A.
b Click the Simulate button.

The Simulink software simulates the model using the fixed-point
instrumentation and data type settings specified in Setting A.

6-16

Debug a Fixed-Point Model

Afterward, in the Contents pane, the Fixed-Point Tool displays the
simulation results for each block that logged fixed-point data. The tool
stores the results in the run named Setting A.

Tip In the Fixed-Point Tool Contents pane, click Run to sort the
results in this column.

Debugging the Model with the New Input
1 Simulate the model with original fixed-point settings on Math1 while
overriding the fixed-point settings with doubles on Math2.

a On the Fixed-Point Tool Model Hierarchy pane, select
ex_fixedpoint_debug.

b On the Shortcuts to set up runs pane, click Setting B.
¢ Click the Start button.

No overflows occur, which indicates that the settings on Math1 are not
causing the overflows.

2 Simulate with original fixed-point settings on Math2 while overriding the
fixed-point settings with doubles on Matht.

a On the Fixed-Point Tool Model Hierarchy pane, select
ex_fixedpoint_debug.

b On the Shortcuts to set up runs pane, click Setting C.
¢ Click the Start button.

Overflows occur, which indicates that the fixed-point settings on Math2
are causing the overflows. Next, use the Fixed-Point Tool to propose
new data types for this subsystem.

Proposing Fraction Lengths for Math2 Based on
Simulation Results

1 On the Fixed-Point Tool Model Hierarchy pane, select Math2.

6-17

6 Fixed-Point Tool

6-18

2 On the Automatic data typing for selected system pane, click the
Propose fraction lengths button.

3 In the Propose Data Types dialog box, select Setting B as the run to use
for proposing data types and click OK. This run simulated Math2 with
double override to obtain the ’ideal’ behavior of the subsystem based on the
simulation results for both input stimuli.

The Fixed-Point Tool proposes new fixed-point data types for the objects in
subsystem Math2 to avoid numerical issues such as overflows.

4 On the Contents pane ProposedDT column, examine the proposed data
types for the objects in Math2. The tool proposed new fixed-point data types
with reduced precision for the Add1 block Output and Accumulator.

5 Because the Fixed-Point Tool marked all the proposed results with a green
icon to indicate that the proposed data types pose no issues for these
objects, accept the proposals.

In the Automatic data typing for selected system pane, click the
Apply accepted fraction lengths button.

Verifying the New Settings

Verify that the new settings do not cause any numerical problems by
simulating the model using local settings for subsystems Math1 and Math2 and
logging the results. Use shortcut Setting A that you set up for these settings.

1 On the Shortcuts to set up runs pane, click Setting A.

2 On the Data collection pane, set Store results in run to Setting
A2 and click Apply so that the Fixed-Point Tool does not overwrite the
previous results for this shortcut.

3 Click the Simulate button.

The Simulink software simulates the model using the new fixed-point
settings. Afterward, the Fixed-Point Tool displays the simulation results
in run Setting A2. No overflows or saturations occur indicating that the
model can now handle the full input range.

Logging Simulation Minimum and Maximum Values for Referenced Models

Logging Simulation Minimum and Maximum Values for
Referenced Models

In this section...

“Viewing Simulation Minimum and Maximum Values for Referenced
Models” on page 6-19

“Fixed-Point Instrumentation and Data Type Override Settings” on page
6-21

“See Also” on page 6-21

Viewing Simulation Minimum and Maximum Values
for Referenced Models

The Fixed-Point Tool logs simulation minimum and maximum values for
referenced models. The tool logs these values only for instances of the
referenced model that are in Normal mode. It does not log simulation
minimum and maximum values for instances of the referenced model that
are in non-Normal modes. If your model contains multiple instances of a
referenced model and some are instances are in Normal mode and some are
not, the tool logs and displays data for those that are in Normal mode.

If a model contains a referenced model, the Fixed-Point Tool Model
Hierarchy pane displays a subnode for the instance of the referenced
model as well as a node for the referenced model. For example, the
ex_mdlref _controller model contains a Model block that references the
ex_controller model. The Fixed-Point Tool shows both models in the model
hierarchy.

6-19

6 Fixed-Point Tool

.

5] i
PR —
1| Pacne i g G

Bt et e gt

] -

If a model contains multiple instances of a referenced model, the tool displays
each instance of the referenced model in this model as well as a node for the
referenced model. For example, the ex_multi_instance model contains two
instances of the referenced model ex_sum. The Fixed-Point Tool displays both
models and both instances of the referenced model in the model hierarchy.

Model Herarchy

Contents of: ex_multi_instance (mmo-off)
4 P Fixed-Paint Taal Root

4+ (B e muiti_instance (mma-of) Column View: [Simulation View | show Details
Model fex_sum1) (mmo-aff) =
Name Run SignalName CompiledDT SpecifiedDT SimMin SimMax
Modell (ex_suml) (mmo-off)
B ex_suml (mmo-off) E cain runl
=1 Gaint runt
I3 outt runi
I3 out2 runt

The tool logs and displays the results for each instance of the referenced
model. For example, here are the results for the first instance of the
referenced model ex_sum1 in ex_multi_instance.

Model Hierarchy Contents of: Model (ex_sum1) (mmo-off)
4 %Y Fixed-Point Tool Raot
4 B ex_multi_instance (mmo-off)
Madel (ex_sum1] (mmo-off}
Modell (ex_suml) (mmo-off]
® exsuml (mmo-off)

Column View: [Simulation View] Show Details

Name Run SignalName CompiledDT SpecifiedDT SimMin SimMax
Ll sum: Accumulator runt
I sum: Output runl

Here are the results for the second instance of ex_sum1.

6-20

Logging Simulation Minimum and Maximum Values for Referenced Models

Model Hierarchy Contents of: Model1 (=x_sum1) (mmo-off)
4 P Fixed-Point Tool Root
4 B e multi_instance (nmo-off]
Model (ex_sum1) (mmo-off)
Modell (ex_suml) [mmo-off)
B e suml (mmo-off)

Column View: | Simulation View ~ | show Detals

Il sum: Accumulator runt

Name Run SignalName CompiledDT SpecifiedDT SimMin SimMax
1 sum: Output runl

In the referenced model node, the tool displays the union of the results for
each instance of the referenced model.

Model Hierarchy Contents of: ex_sum1 (mmo-off)
4 * Fixed-Point Taol Root
4 B eCmulti_instance (mmo-off)
Model [ex_sum1) (mmo-off)
Modell (ex_suml) (mmo-aff]
¥ ex_suml (mmo-off)

Column View: [Smulation view | show Detals

=1 Sum: Accumulator runt

HName ‘ Run Signallame CompiledDT SpecifisdDT SimMin SimMax
1 sum: output runl

Fixed-Point Instrumentation and Data Type Override
Settings

When you simulate a model that contains referenced models, the data type
override and fixed-point instrumentation settings for the top-level model do
not control the settings for the referenced models. You must specify these
settings separately for the referenced model. If the settings are inconsistent,
for example, if you set the top-level model data type override setting to double
and the referenced model to use local settings and the referenced model uses
fixed-point data types, data type propagation issues might occur.

You can set up user-defined shortcuts across referenced model boundaries.
The factory default shortcuts apply only to the top-level model and so do not
affect the settings of any referenced model.

When you change the fixed-point instrumentation and data type override

settings for any instance of a referenced model, the settings change on all
instances of the model and on the referenced model itself.

See Also

® “Log Simulation Minimum and Maximum Values for Referenced Models”
on page 6-22

6-21

6 Fixed-Point Tool

Log Simulation Minimum and Maximum Values for
Referenced Models

This example shows how to log simulation minimum and maximum values for
a model that contains multiple instances of the same referenced model.

Simulate the Model Using Local Settings

1 Open the ex_mdlref_controller model. At the MATLAB command line,
enter:

addpath(fullfile(docroot, 'toolbox"','fixpoint', 'examples'))
ex_mdlref_controller

4 ex_mdlied_cormiolicr

Fie Ede View Doplay Diagre Sewustien Anal Cede eals Help

hrses
E-H a8 o ~= 4 (= ik &) v azom Homal

troler

Scaling a Fixed-Point Control Design

ex_controller

In1 Qut1

Controller Digtal o Anaing
rtortace

Digital Contreller
Software on
Fixed Point
Processor

The model contains a Model block that references the ex_controller
model. Using a referenced model isolates the controller from the rest of the
system. This method is useful to help you configure a model to determine
the effect of fixed-point data types on a system. Using this approach, you
convert only the referenced model because this is the system of interest.

6-22

Log Simulation Minimum and Maximum Values for Referenced Models

¥ ex_controller (=[O sl
File Edit View Display Diagram Simulation Analysis Code Tools Help
=]]] =] (ol (S84
k- = 4 BB e-= 4G & > (&) ¥ 4270.01 » () 7| g T
ex_controller
® |[*a ex_controller v
= ! - | Convert ' » numiz) >
TrackingError 1
Up Cast Numerstor Terms outt @
3
Convert from Multiply and Accumulate:
AZD Type Mest Recent Inputs and ‘i‘ ‘i‘
to BaseType MNumerator Coefficients | Convert
in Accumulator Plantinput
Drown Cast
Reduce Qutput from
1 3 numiz) Accumulator Size to
» L t »— g Base Memory Size
z 1
Prev Cut Dencminator Terms
Store Maost Multiply and Accumulate
Recent Output Most Recent Outputs and
in Memary for Denominstor Cosflicients S—
One Sampie Time in Accumulator Gombine Terms
Combine Numerstar
and Denominator
Confributions to TF
inAccumulstor
>

2 In this example, the Fixed-Point Tool opens automatically. In its
Model Hierarchy pane, the tool displays two model nodes, one for
the ex_mdlref_controller model showing that this model contains a
Model block that refers to the ex_controller model, and another for the
ex_controller model itself.

6-23

6 Fixed-Point Tool

6-24

21| Houdeiwie douitle aveerale snd ful ratumantsson
21| Hiorke w0 e et et
Akt o
Settrga for seeted sritem
Fruns-pont e tason mode:

M, mames o prefows -

Daka bypes override:

e o st =
Data cobecton
Seresdtsnnes Run |
)| miste
M raumntaben et i i st

| Deve mirjeman vales o pedected! pprtem

3 In the Fixed-Point Tool Model Hierarchy pane, select the
ex_mdlref _controller model.

4 On the Settings for selected system pane, verify that:

¢ Fixed-point instrumentation mode is set to Minimums, maximums
and overflows.

* Data type override is set to Use local settings so the model will log
simulation data using the data types set up on the model.

5 In the Fixed-Point Tool Data collection pane, set Store results in run to
initial run and then click Apply.

Providing a unique name for the run avoids accidentally overwriting results
from previous runs and enables you to identify the run more easily.

6 The fixed-point instrumentation and data type override settings for the
top-level model do not affect the settings in the referenced model. In the
Fixed-Point Tool Model Hierarchy pane, select the ex_controller model

and verify that:

Log Simulation Minimum and Maximum Values for Referenced Models

¢ Fixed-point instrumentation mode is set to Minimums, maximums
and overflows

* Data type override is set to Use local settings

7 In the Fixed-Point Tool, click Simulate.

The Simulink software simulates the model. Afterward, the Fixed-Point
Tool displays in its Contents pane the simulation results for each block
that logged fixed-point data. By default, it displays the Simulation View
of these results.

The Simulation Data Inspector tool opens. You can use this tool to inspect
and compare signals in your model.

8 In the Fixed-Point Tool Model Hierarchy pane, select the ex_controller
model.

The Fixed-Point tool displays the results for the referenced model and
highlights the Up Cast block in red to indicate that there is an issue with
this result. The Saturations column for this result shows that the block
saturated 23 times, which indicates poor scaling.

Next, use data type override mode to perform a global override of the
fixed-point data types and scaling using double-precision numbers to
avoid quantization effects. Later, you use these simulation results when
performing automatic data typing.

Gather a Floating-Point Benchmark

6-25

6 Fixed-Point Tool

6-26

1 In the Settings for selected system pane, set Data type override to
Double.

2 In the Data collection pane, set Store results in run to double run
and then click Apply.

3 In the Model Hierarchy pane, select the ex_mdlref controller model,
set Data type override to Double and then click Apply.

Setting data type override for the top-level model avoids data type
propagation issues when you simulate the model.

4 In the Fixed-Point Tool, click Simulate.

The Simulink software simulates the ex_mdlref_controller model in data
type override mode and stores the results in the run named double_ run.
Afterward, the Fixed-Point Tool displays in its Contents pane the results
along with those of the run that you generated previously.

5 Use the Simulation Data Inspector to view the initial_run and
double run versions of the signal associated with the Analog Plant output
(upper axes), and the difference between the signals (lower axes).

Log Simulation Minimum and Maximum Values for Referenced Models

[1] Simulatian Data Inspectar®
File Plot Help

Ddd B FRHEAED| @

Inspect Signals Compare Signals | Compare Rums

A0 TrackingFrror
& Analog Plent PlantOutput

Sigl g2 BlockMame SignalMsme Line
1 mitial_nun
A0 Trackinglrror
[T 0~ 0 ones i piors [0
Reference DesiredOutput "
double run

Reference DesiredOutpue V"""

=
Signals =
3 |
1 A
1
0
B :
2
3
AL L " L
[1 15 2 25 3 15 4
Difaranca [
a (e~
——— Differance
Tolerance
! f
) I
\
|
2 | \
SN | I -
N / NN .
. v \ f w4
)
0 : :
0.5 1 15 2 25 3 15 4

Now you are ready to propose data types based on the simulation results
from the doubles override run. See “Propose Data Types for a Referenced

Model” on page 6-28.

See Also

Models” on page 6-19

® “Propose Data Types for a Referenced Model” on page 6-28

® “Logging Simulation Minimum and Maximum Values for Referenced

6-27

6 Fixed-Point Tool

6-28

Propose Data Types for a Referenced Model

This example shows how to propose data types for a referenced model. To run
this example, you must first run “Log Simulation Minimum and Maximum
Values for Referenced Models” on page 6-22.

1 In the Model Hierarchy pane of the Fixed-Point Tool, select the
ex_controller model.

2 In the Automatic data typing for selected system pane, click the
Configure link and verify that Propose fraction lengths for specified
word lengths is selected.

3 In the same pane, specify the Safety margin for simulation min/max
(%) parameter as 20 and click Apply.

4 In the Fixed-Point Tool, click Propose fraction lengths, ‘E,.

Because no design minimum and maximum information is supplied, the
simulation minimum and maximum data that was collected during the
simulation run is used to propose data types. The Percent safety margin
for simulation min/max parameter value multiplies the “raw” simulation
values by a factor of 1.2. Setting this parameter to a value greater than 1
decreases the likelihood that an overflow will occur when fixed-point data
types are being used. For more information about how the Fixed-Point Tool
calculates scaling proposals, see “Automatic Data Typing Using Simulation
Data” on page 9-11.

Because of the nonlinear effects of quantization, a fixed-point simulation
will produce results that are different from an idealized, doubles-based
simulation. Signals in a fixed-point simulation can cover a larger or
smaller range than in a doubles-based simulation. If the range increases
enough, overflows or saturations could occur. A safety margin decreases
the likelihood of this happening, but it might also decrease the precision of
the simulation.

5 In the Propose Data Types dialog box, select double run and click OK.

The Fixed-Point Tool analyzes the scaling of all fixed-point blocks whose:

Propose Data Types for a Referenced Model

* Lock output data type setting against changes by the fixed-point
tools parameter is not selected.

® OQutput data type parameter specifies a generalized fixed-point
number.

The Fixed-Point Tool uses the minimum and maximum values stored in
the selected run to propose each block’s scaling such that the precision is
maximized while the full range of simulation values is spanned. The tool
displays the proposed scaling in its Contents pane. Now, it displays the
Automatic Data Typing View to provide information, such as ProposedDT,
ProposedMin, ProposedMax, which are relevant at this stage of the
fixed-point conversion.

Contents of: ex_contraller™ (mmo-dbl)

Column View: | Automatic Data Typing View + | show Details

Mame Run B CompiledDT Accept ProposedDT SpecifiedDT SimMin SimMax ProposedMin ProposedMax
13 Combine Terms : Accumulatar double_run
52 Combine Terms : Output double_run
I3 Denominator Terms : Accumulator dauble_run

fixdt(1,32,28)

fixdt(1,32,27)
12 Denominator Terms : Output double_run fixdt(1,32,28)
1% Denominator Terms : Product output double_run [)
13 Down Cast dauble_run i)
Him double_run
13 Numerator Terms : Accumulator dauble_run

fixdt(1,32,27]
fixelt(1,16,12]

AREERF

fixdt(1,32,28)

12 Numerator Terms : Output double_run fixdt(1,32,28)
1% Numerator Terms : Product output double_run fixdt(1,32,28)
2 outt dauble_run i)
()

53 up cast double_run

fixelt(1,16,12]
fixdt(1,16,12]

A EEREE

6 Review the scaling that the Fixed-Point Tool proposes. You can choose to
accept the scaling proposal for each block by selecting the corresponding
Accept check box in the Contents pane. By default, the Fixed-Point Tool
accepts all scaling proposals that differ from the current scaling. For this
example, verify that the Accept check box associated with the active run is
selected for each of the Controller subsystem’s blocks.

The Fixed-Point Tool does not propose a data type for Combine
Terms:Accumulator and displays n/a in the ProposedDT column. The
tool does not propose a data type because the SpecifiedDT is Inherit:
Inherit via internal rule. To view more information about a proposal,

click the Show details for selected result button @

7 In the Fixed-Point Tool, click the Apply accepted fraction lengths

button ‘i’

6-29

6 Fixed-Point Tool

The Fixed-Point Tool applies to the scaling proposals that you accepted
in the previous step.

8 In the Model Hierarchy pane of the Fixed-Point Tool, select the
ex_mdlref_controller model.

a In the Settings for selected system pane, set Data type override
to Use local settings. This option enables each of the model’s
subsystems to use its locally specified data type settings, however, it
does not apply to the referenced model.

b In the Data collection pane, set Store results in run to
scaled_fixed_run and then click Apply.

9 In the Model Hierarchy pane, select the ex_controller model and set its
Data type override parameter as Use local settings and click Apply.

10 In the Fixed-Point Tool, click Simulate.

The Simulink software simulates the ex_mdlref_controller model using
the new scaling that you applied. Afterward, the Fixed-Point Tool displays
in its Contents pane information about blocks that logged fixed-point data.

11 Use the Simulation Data Inspector to plot the Analog Plant output for the
floating-point and fixed-point runs and the difference between them.

The difference plot shows that the difference between the floating-point
signal and the fixed-point signal is within the specified tolerance of 0.04.

6-30

Propose Data Types for a Referenced Model

e
.

6-31

6 Fixed-Point Tool

Logging Simulation Minimum and Maximum Values for a
MATLAB Function Block

You can log simulation minimum and maximum values for MATLAB Function
blocks using the Mininums, maximumx and overflows logging control in the
Fixed-Point Tool. The logged minimum and maximum values are displayed
in the MATLAB Function Report. For fixed-point data types, the report

also displays the percent of current range. You can use the simulation
minimum/maximum data to help you determine the optimal word length

and fraction length of fixed-point data types for signals in your model. After
modifying your model to use fixed-point data types, simulate again to verify
that the data types cover the full intended operating range.

Note The software does not log simulation minimum and maximum values
for MATLAB Function blocks used as a reference (library) block or in a
referenced model.

See Also

® “Log Simulation Minimum and Maximum Values for a MATLAB Function
Block” on page 6-33

6-32

Log Simulation Minimum and Maximum Values for a MATLAB Function Block

Log Simulation Minimum and Maximum Values for a
MATLAB Function Block

This example shows how to log simulation minimum and maximum values for
a MATLAB Function block and view these values in the MATLAB Function
Report.

1 Open the ex_matlab_function_block logging model. At the MATLAB
command line, enter:

addpath(fullfile(docroot, 'toolbox', 'fixpoint', 'examples'))
ex_matlab_function_block_logging

P& ex_matlab_function_block_logging EI@
File Edit View Display Diagram Simulation Analysis Code Tools Help
- a ES-E GOP @0 - Q- -
| ex_matlab_function_block_logging |
® |[*a| ex_matlab_function_block_logging -
@
E3
=
p]
Input
MI—» 1 plx v »]
Z teg_filter
Chirp Signal Unit Delay Oufput
MATLAB Function
»

Ready 139% FixedStepDiscrete

2 From the model Analysis menu, select Fixed-Point Tool.

6-33

6 Fixed-Point Tool

3 In the Fixed-Point Tool, under Settings for selected system,
Fixed-point instrumentation mode is set to Minimums, maximums and
overflows so that the Fixed-Point Tool logs the simulation minimum and
maximum values. Data type override is set to Use local settings so
that the Fixed-Point Tool logs data using the data types specified in the
model.

4 On the Fixed-Point Tool Model Hierarchy pane, select
ex_matlab_function_block_logging.

5 Click the Simulate button, (&,

The Simulink software simulates the model using the specified fixed-point
instrumentation and local data type settings.

6 In the ex_matlab function _block logging model, double-click the
MATLAB Function block.

The MATLAB Function block code is displayed in the MATLAB editor
window.

7 In MATLAB, on the Editor tab, click View Report.

8 In the MATLAB Function Report, click the Variables tab.

The Variables tab displays the simulation minimum and maximum values
for the MATLAB Function block input, output, and variables.

6-34

Log Simulation Minimum and Maximum Values for a MATLAB Function Block

MATLAB Function Report

Function: 'MATLAB Function’

MATLAB code Call stack Function: fest filter

@ Filter 1 function vy = test_filter(x)

S Functions 2 persistent z
3 if isempty(z)

& test filfex 4 z = zeros(2,1):

E end
6 v = coder.nullcopy (zeros (size (x)));
7 b = [0.0299545822080925 0.0599091644161849 0.0299545822080925];
8 a=[1 -1.4542435862515900 0.5740619150839550];
a for i=l:length(x)
10 vii) = Db(1)*x(1) + z(1);
11 2(1) = b(2)*x(i) + z(2) - a(2) * y(i);
1z 2(2) = b(3)*x(i) - ald) * y(i);
13 end
14 end

Summary AllMessages (0) Variables

Order Variable Type Size Class Complex m‘:ﬁ?’mmbe[SimMin SimMax

1 ¥ Output 1x1 double Mo Ne -0.9953042106664765 0.9982037870598791
2 X Input 1x1 double Mo No -0.9999998058235401 0.9999352241729103
3 z Persistent 2x1 double Mo No -0.9674129881375739 0.9690706423526149
4 b Local 1x3 double No No 0.0299545822080925 0.0599091644161349
5 a Local 1%3 double Mo Ne -1.45424358625159 1

6 i Local 1x1 double Mo Yes 1 1

See Also

* “Logging Simulation Minimum and Maximum Values for a MATLAB
Function Block” on page 6-32

6-35

6 Fixed-Point Tool

View Signal Names in the Fixed-Point Tool

To view signal names in the Fixed-Point Tool:

1 In the Fixed-Point Tool Contents pane, click Show Details.

2 In the list box of available columns, select SignalName.

Contents of: fxpdemo_feedback™ {mma)

Column View: [Simulah’on View « | Hide Details
Find Properties Display column names in this order:
LogSignal " Column Mame
SignalMame 3 Run
Run k‘ CompiledDT
SimDT i
CompiledDT : SpedfiedDT

SpecifiedDT o [smbin
ProposedDT SimMax =
Accept |5 DesignMin

DesignMin

DerivedMin DesignMax
SimMin ovflrap
PrUPnsede Ovfsat
DesignMax

DerivedMax =

3 Click %),

The Fixed-Point Tool includes SignalName in the list box of columns to
display.

4 Optionally, use the up and down arrow buttons to change the display order
for the columns.

5 Click Hide Details.

6 If a signal has a name, the Fixed-Point Tool displays the name in the
Contents pane.

6-36

View Signal Names in the Fixed-Point Tool

Contents of: fxpdemo_feedback™ (mmo)

Column View: | Simulation View * | Show Details
MName : Run | SignalMame CompiledDT
I#] s20 Run 1
13! analog Plant Run 1
=l controller/Combine Terms : Accumulatar Run1
ﬁl Controller/Combine Terms : Cutput Run1
=1 controller/Denominatar Terms : Accumulator Run1
I=1 controller/Denominator Terms : Cutput Run1
I=1 controller/Denominator Terms @ Product output Run 1
I#] controller/Down Cast Run1
ﬁl Controller/Inl Run1
I=1 contraller/Mumeratar Terms @ Accumulatar Run1
=1 controller/Mumerator Terms : Cutput Run1
I=1 controller/Mumeratar Terms @ Product output Run1

e

6-37

6 Fixed-Point Tool

6-38

7

Automatically Converting
a Floating-Point Model to
Fixed Point

¢ “Learning Objectives” on page 7-2
e “Model Description” on page 7-4
® “Before You Begin” on page 7-7

e “Automatically Converting a Floating-Point Model to Fixed Point” on page
7-9

“Key Points to Remember” on page 7-28

“Where to Learn More” on page 7-29

7 Automatically Converting a Floating-Point Model to Fixed Point

7-2

Learning Objectives
In this example, you learn how to:

¢ Convert a floating-point system to an equivalent fixed-point representation.

This example shows the recommended workflow for conversion when using
proposing fraction lengths based on simulation data.

Use the Fixed-Point Advisor to prepare your model for conversion.

The Fixed-Point Advisor provides a set of tasks to help you convert a
floating-point system to fixed point.

You use the Fixed-Point Advisor to:

= Set model-wide configuration options

= Set block-specific dialog parameters

= Check the model against fixed-point guidelines.
= Identify unsupported blocks.

= Remove output data type inheritance from blocks that use floating-point
inheritance.

= Promote simulation minimum and maximum values to design minimum
and maximum values. This capability is useful if you want to derive
ranges for objects in the model and you have not specified design
ranges but you have simulated the model with inputs that cover the
full intended operating range. For more information, see “Specify block
minimum and maximum values” on page 12-33.

Use the Fixed-Point Tool to propose fixed-point data types.

The Fixed-Point Tool automates the task of specifying fixed-point data
types in a system. In this example, the tool collects range data for model
objects, either from design minimum and maximum values that you
specify explicitly for signals and parameters, or from logged minimum and
maximum values that occur during simulation. Based on these values, the
tool proposes fixed-point data types that maximize precision and covers the
range. The tool allows you to review the data type proposals and then
apply them selectively to objects in your model.

¢ Handle floating-point inheritance blocks during conversion.

Learning Obijectives

For floating-point inheritance blocks when inputs are floating point, all
internal and output data types are floating point. The model in this
example uses a Discrete Filter block, which is a floating-point inheritance

block.

7-3

7 Automatically Converting a Floating-Point Model to Fixed Point

Model Description

In this section...

“Model Overview” on page 7-4
“Model Set Up” on page 7-5

Model Overview
This example uses the ex_fixed_point_workflow model.

bﬁ ex_fixed_point_workflow EI@
File Edit View Display Diagram Simulation Analysis Code Tools Help
B8 e Ee-EHLOP - @ s Cr—
ex_fixed_point_workflow
@ |[Pa) ex_fixed_point_worlkflow b -
@
]
= Repesting tsble m o
pesting Rate Conversion1

Source
Transition

B—. " o "

Sine Wave
Source

Comersion2

Controller Subsystem Soope

»

Ready 100% oded5

The model consists of a Source, a Controller Subsystem that you want to
convert to fixed point, and a Scope to visualize the subsystem outputs. This
method 1s how you configure a model to determine the effect of fixed-point
data types on a system. Using this approach, you convert only the subsystem
because this is the system of interest. There is no need to convert the Source
or Scope to fixed point.

This configuration allows you to modify the inputs and collect simulation data
for multiple stimuli. You can then examine the behavior of the subsystem
with different input ranges and scale your fixed-point data types to provide
maximum precision while accommodating the full simulation range.

7-4

Model Description

Model Set Up

The model consists of the following blocks and subsystem.

Source

¢ Repeating table Source

A Repeating Sequence (Repeating Table) block provides the first input to
the Controller Subsystem and periodically repeats the sequence of data
specified in the mask.

e Rate Transition

A Rate Transition block outputs data from the Repeating table Source
block at a different rate to the input.

* Sine Wave Source
A Sine Wave block provides the second input to the Controller Subsystem.

Initially, the amplitude of the Sine Wave block is 1. Later, you modify the
amplitude to change the input range of the system.

¢ Conversionl and Conversion2

These two Conversion blocks are set up so that the real-world values of
their input and output are equal.

Controller Subsystem
The Controller Subsystem consists of:

¢ Discrete Filter

The Discrete Filter block filters the Repeating table Source signal. The
Discrete Filter is a floating-point inheritance block. For floating-point
inheritance blocks, when inputs are floating-point, all internal and output
data types are floating point.

e Chart

The Chart consists of aStateflow Chart block which converts the Sine Wave
input to a positive output and multiplies it by 3.

¢ Lookup Table for Chart

7 Automatically Converting a Floating-Point Model to Fixed Point

The Lookup Table for Chart block is the first of two identical n-D Lookup
Table blocks. This block receives the output from the Chart and, at each
breakpoint, outputs the input multiplied by 10.

¢ (Gain
The Gain block multiplies the Sine Wave input by -3.
* Lookup Table for Gain

The Lookup Table for Gain block is a n-D Lookup Table block. It receives
the output from the Gain block and, at each breakpoint, outputs its input
multiplied by 10.

¢ Sum for Chart

This Sum block adds the outputs from the Discrete Filter and Lookup Table
for Chart blocks and outputs the result to the Scope block.

¢ Sum for Gain

This Sum block adds the outputs from the Discrete Filter and Lookup Table
for Gain blocks and outputs the result to the Scope block.

Scope

* Scope

The model includes a Scope block that displays the Controller Subsystem
output signals.

7-6

Before You Begin

Before You Begin

This example shows the recommended workflow for converting a floating-point
system to fixed point using design and simulation data. It shows you how

to use the Fixed-Point Advisor to prepare a floating-point subsystem for
conversion to an equivalent fixed-point representation, and then how to use
the Fixed-Point Tool to propose the fixed-point data types in the subsystem.

The example uses the following recommended workflow:

1 “Prepare Floating-Point Model for Conversion to Fixed Point” on page 7-9.

Step through the Fixed-Point Advisor tasks that prepare the floating-point
subsystem for conversion to an equivalent fixed-point representation.

Note If your model contains referenced models, you must run the
Fixed-Point Advisor on each instance of the referenced model as well as
the parent model.

2 “Propose Data Types” on page 7-18.

Propose data types based on the simulation results. Examine the results
to resolve any conflicts and to verify that you want to accept the proposed
data type for each result.

3 “Apply Fixed-Point Data Types” on page 7-19.

Write the proposed data types to the model. Perform the automatic data
typing procedure, which uses the double-precision simulation results to
propose fixed-point data types for appropriately configured blocks. The
Fixed-Point Tool allows you to accept and apply the proposals selectively.

4 “Verify Fixed-Point Settings” on page 7-19.

Simulate the model again using the fixed-point settings. Compare the ideal
results for the double-precision run with the fixed-point results.

7-7

7 Automatically Converting a Floating-Point Model to Fixed Point

5 Test the fixed-point settings with a different input stimulus and, if
necessary, propose new data types to accommodate the simulation range
for this input.

7-8

Automatically Converting a Floating-Point Model to Fixed Point

Automatically Converting a Floating-Point Model to Fixed

Point

In this section...

“Open the Model” on page 7-9

“Prepare Floating-Point Model for Conversion to Fixed Point” on page 7-9
“Propose Data Types” on page 7-18

“Apply Fixed-Point Data Types” on page 7-19

“Verify Fixed-Point Settings” on page 7-19

“Test Fixed-Point Settings With New Input Data” on page 7-21

“Gather a Floating-Point Benchmark” on page 7-23

“Propose Data Types for the New Input” on page 7-24

“Apply the New Fixed-Point Data Types” on page 7-24

“Verify New Fixed-Point Settings” on page 7-25

“Prepare for Code Generation” on page 7-26

Open the Model

Open the ex_fixed_point_workflow model. At the MATLAB command line,
enter:

addpath(fullfile(docroot, 'toolbox', 'fixpoint', 'examples'))
ex_fixed_point_workflow

Prepare Floating-Point Model for Conversion to Fixed
Point

The Fixed-Point Advisor provides a set of tasks that help you prepare a
floating-point model or subsystem for conversion to an equivalent fixed-point
representation. After preparing your model, you use the Fixed-Point Tool to
perform the fixed-point conversion.

7 Automatically Converting a Floating-Point Model to Fixed Point

7-10

In this part of the example, you use the Fixed-Point Advisor to prepare the
Controller Subsystem in the ex_fixed point_ workflow model for conversion.

Open the Fixed-Point Advisor

1 In the ex_fixed point_workflow model menu, select
Analysis > Fixed-Point Tool.

2 In the Fixed-Point Tool:
a In the Model Hierarchy pane, select the Controller Subsystem.

b In the Fixed-point preparation for selected system pane, click the
Fixed-Point Advisor button.

You run the Fixed-Point Advisor on the ex_fixed_point_workflow
Controller Subsystem because this is the system of interest. There is no
need to convert the system inputs or the display to fixed point.

Prepare Model for Conversion

1 In the Fixed-Point Advisor left pane, expand the Prepare Model for
Conversion folder to view the tasks. For the purpose of this example, run
the tasks in the this folder one at a time. Select Verify model simulation
settings and, in the right pane, select Run this task.

This task validates that model simulation settings allow signal logging and
disables data type override in the model and for fi objects or embedded
numeric data types in your model or workspace. These settings facilitate
conversion to fixed point in later tasks.

A waitbar appears while the task runs. When the run is complete, the
result shows that the task passed.

2 Select and run Verify update diagram status.

Verify update diagram status runs. Your model must be able to
successfully update diagram to run the checks in the Fixed-Point Advisor.

The task passes.

Automatically Converting a Floating-Point Model to Fixed Point

3 Select and run Address unsupported blocks. This task identifies blocks
that do not support fixed-point data types.

The task passes because the subsystem contains no blocks that do not
support fixed-point data.

4 Select and run Set up signal logging. Prior to simulation, you must
specify at least one signal for the Fixed-Point Advisor to use for analysis
and comparison in downstream checks. You should log, at minimum, the
unique input and output signals.

The task generates a warning because signal logging is not specified for
any signals.

5 Fix the warning using the Model Advisor Result Explorer:
a Click the Explore Result button.

The Model Advisor Result Explorer opens.

b In the middle pane, select each signal you want to log and, next to the
signal, select the corresponding EnableLogging check box.

For this example, log these signals:
® | ookup Table for Gain
® Lookup Table for Chart
® Chart
e Discrete Filter
¢ Close the Model Advisor Result Explorer.
d In the Fixed-Point Advisor window, click Run This Task.

The task passes because signal logging is now enabled for at least one
signal.

6 Select and run Create simulation reference data.

The Fixed-Point Advisor simulates the model using the current solver
settings, and creates and archives reference signal data in a run named
FPA_Reference to use for analysis and comparison in later conversion

7-11

7 Automatically Converting a Floating-Point Model to Fixed Point

7-12

tasks. This task also validates that model simulation settings allow signal
logging and that the Fixed-point instrumentation mode is set to
Minimums, maximums and overflows.

The Fixed-Point Advisor issues a warning and provides information in
the Analysis Result box that logging simulation minimum and maximum
values failed.

Logging failed because the Fixed-point instrumentation mode is Use
local settings, but the recommended setting is Minimums, maximums
and overflows.

To fix the failure, in the Action pane, click Modify All.

The Fixed-Point Advisor configures the model to the settings recommended
in the Analysis Result pane. The Action pane displays a table of changes

showing that the Fixed-point instrumentation mode is now Minimums,

maximums and overflows

Click Run This Task.

Running the task after using the Modify All action verifies that you made
the necessary changes. The Analysis Result pane updates to display a
passed result and information about why the task passed.

Tip You can view the reference run data in the Fixed-Point Tool
Contents pane in the run named FPA_Reference or in the Simulation
Data Inspector. Because you ran the simulation twice, the Simulation
Data Inspector displays data for both runs using the same name
(FPA_Reference).

In the Verify Fixed-Point Conversion Guidelines folder, select and run
Check model configuration data validity diagnostic parameters
settings. This task verifies that the Model Configuration Parameters
> Diagnostics > Data Validity > Parameters options are all set to
warning. If these options are set to error, the model update diagram
action fails in downstream checks.

The task passes because none of these options are set to error.

Automatically Converting a Floating-Point Model to Fixed Point

10 Select and run Implement logic signals as Boolean data. This task

12

13

14

verifies that Model Configuration Parameters > Optimization >
Implement logic signals as Boolean data is selected. If it is cleared, the
code generated in downstream checks is not optimized.

The task passes.

Select and run Check for proper bus usage. This task identifies:
® Mux blocks that are bus creators

® Bus signals that the top-level model treats as vectors

Note This is a Simulink check. For more information, see “Check for
proper bus usage” in the Simulink documentation.

The task runs and generates a warning because this check works only
from top-level models and you are running from the subsystem. Because
this model uses no buses, ignore this warning. For models containing
buses, you must run the Fixed-Point Advisor from the top-level model to
perform this check.

Select and run Simulation range checking. This tasks verifies that the
Model Configuration Parameters > Diagnostics > Simulation range
checking option is not set to none.

The task generates a warning because the Simulation range checking
option is none.

To fix the warning, in the Action box, click Modify All.

The Fixed-Point Advisor sets the Simulation range checking option to
warning.

Rerun the task.

The task now passes because the Simulation range checking option is
correct.

7-13

7 Automatically Converting a Floating-Point Model to Fixed Point

15 Select and run Check for implicit signal resolution. This task checks
for models that use implicit signal resolution.

The task fails because implicit signal resolution is enabled.
16 To fix the failure, in the Action box, click Modify All.

The Fixed-Point Advisor sets the Signal resolution option to Explicit
only.

17 Rerun the task.

The task now passes.

You have completed all the tasks for the Prepare Model for Conversion
folder. At this point, you can review the results report found at the folder
level, or continue to the next folder.

Prepare for Data Typing and Scaling

This folder contains tasks that set the block configuration options and set
output minimum and maximum values for blocks. The block settings from
this task simplify the initial data typing and scaling. Later tasks set optimal
block configuration. The tasks in this folder prepare the model for automatic
data typing in the Fixed-Point Tool.

1 For the purpose of this example, run the tasks in the Prepare for Data
Typing and Scaling folder one at a time.

Open the Prepare for Data Typing and Scaling folder then select
and run Review locked data type settings. This task identifies blocks
that have their data type settings locked down which excludes them for
automatic data typing.

This task passes because the model contains no blocks with locked data
types.

2 Select and run Remove output data type inheritance. This task
1dentifies blocks that have an inherited output signal data type that might
lead to data type propagation errors.

7-14

Automatically Converting a Floating-Point Model to Fixed Point

This task fails because there are floating-point inheritance blocks in

the model. For floating-point inheritance blocks, when inputs are
floating-point, all internal and output data types are floating point.
Therefore, you must specify an input parameter data type for these blocks.

3 In the Fixed-Point Advisor Input Parameters pane, set Data type for
blocks with floating-point inheritance to int16, and rerun the task.

The task fails and the Fixed-Point Advisor provides information about the
failure in the Analysis Result box. The Fixed-Point Advisor recommends
that you set:

¢ The input data type of the Discrete Filter block, which is a floating-point
inheritance block, to a fixed-point data type to avoid floating-point
inheritance.

¢ The output data type of all the other blocks that currently have their
output data type set by inheritance rules to the compiled (current
propagated) data type.

Tip Review the recommended data types prior to accepting them.

4 Fix the failure using the Modify All button to configure the output data
types to the recommended values.

The Action Result box displays:

* A table showing the previous and current data types for all the
floating-point inheritance blocks.

e A table showing the previous and current data types for blocks that use
other types of inheritance.
5 Rerun the task.
The task passes.
6 Select and run Relax input data type settings. This task identifies

blocks with input data type constraints that might cause data type
propagation issues.

7-15

7 Automatically Converting a Floating-Point Model to Fixed Point

The task passes because the model contains no blocks that have inherited
input data types.

7 Select and run Verify Stateflow charts have strong data typing with
Simulink. This task verifies that the configuration of all Stateflow charts
ensures strong data typing with Simulink I/0.

The task passes because the configuration of the Stateflow chart in the
subsystem is correct.

8 Select and run Remove redundant specification between signal
objects and blocks. This task identifies and removes redundant data
type specification originating from blocks and Simulink signal objects.

The task passes because the model contains no resolved Simulink signal
objects.

9 Select and run Verify hardware selection. This task identifies the
hardware device information in the Hardware Implementation pane of
the Configuration Parameters dialog box. It also checks the default data
type selected for floating-point signals in the model.

The task fails because the default data type for all floating-point signals

1s set to Remain floating-point. Because the target hardware is an
embedded processor, the Fixed-Point Advisor recommends that you set this
value to the hardware integer used by the embedded hardware.

10 To fix the failure, in the Input Parameters pane, set Default data type
of all floating-point signals to Same as embedded hardware integer.

11 Rerun the task.
The task passes.

12 Select and run Specify block minimum and maximum values. Ideally,
you should specify block output and parameter minimum and maximum
values for, at minimum, the Inport blocks in the system. You can specify
the minimum and maximum values for any block in this step. Typically,
you determine these values during the design process based on the system
you are creating.

7-16

Automatically Converting a Floating-Point Model to Fixed Point

13

The Fixed-Point Advisor warns you that you have not specified any
minimum and maximum values.

Fix the warning by specifying minimum and maximum values for Inport
blocks:

Click the Explore Result button.

The Model Advisor Result Explorer opens, showing that the Inport
blocks, In1 and In2, do not have output minimum and maximum values
specified.

In the center pane, select In1. This block receives the output from
Repeating table Source, which has a minimum value of 10 and a
maximum value of 20. Therefore, set OutMin to 10 and set OutMax
to 20 as follows:

i In the OutMin column for Inf1, select [] and replace with 10.
ii In the OutMax column for In1, select [] and replace with 20.

Select In2. This block receives the output from Sine Wave block, which
has a minimum value of -1 and a maximum value of 1. Therefore, set
OutMin to -1 and set OutMax to 1.

Close the Model Advisor Result Explorer.
In the Fixed-Point Advisor, rerun the task.

The task passes because you specified minimum and maximum values
for all Inport blocks.

The tool advises you to specify minimum and maximum values for all
blocks if possible. For the purpose of this example, do not specify other
minimum and maximum values for other blocks.

You have completed all tasks in the Prepare for Data Typing and Scaling
folder. At this point, you can review the results report found at the folder
level, or continue to the next folder.

Return to Fixed-Point Tool to Perform Data Typing and Scaling

Select and run this task to close the Fixed-Point Advisor and return to the
Fixed-Point Tool.

7-17

7 Automatically Converting a Floating-Point Model to Fixed Point

7-18

Propose Data Types

Use the Fixed-Point Tool to propose fixed-point data types for appropriately
configured blocks based on the double-precision simulation results stored in
the simulation reference run that the Fixed-Point Advisor created. These
results are stored in the run named FPA_Reference. You can view the
results in the Fixed-Point Tool Contents pane.

The tool proposes fixed-point data types and scaling based on the ranges of
the Repeating table Source and Sine Wave inputs. You can then use the tool
to accept and apply the proposed data types selectively. In this example, you
propose fraction lengths for the specified word lengths.

1 In the Fixed-Point Tool, click the Propose fraction lengths button °T .

The Fixed-Point Tool analyzes the scaling of all fixed-point blocks whose:

¢ Lock output data type setting against changes by the fixed-point
tools parameter is not selected.

¢ Output data type parameter specifies a generalized fixed-point
number.

® Data types are not inherited.
The Fixed-Point Tool updates the results in the Contents pane.

In the Fixed-Point Tool, set the Column View to Automatic Data Typing
with Simulation Min/Max View to display information relevant to the
proposal. The tool displays the proposed data types in the ProposedDT
column in the Contents pane. The tool does not propose data types for
objects with inherited data types.

To accommodate the full simulation range, the Fixed-Point Tool proposes
data types for blocks that do not have inherited data types. By default,

it selects the Accept check box for these signals because the proposed
data type differs from the object’s current data type. If you apply data
types, the tool will apply the proposed data types to these signals. For more
information, see “Apply Proposed Data Types” on page 9-21.

3 Examine the results to resolve any conflicts and to ensure that you want

to accept the proposed data type for each result.

Automatically Converting a Floating-Point Model to Fixed Point

In the Fixed-Point Tool toolbar, select Show > Conflicts with proposed
data types.

The Fixed-Point Tool detected no conflicts.

Tip If the tool does detect conflicts, you must resolve these before applying
data types. For more information, see “Examine Results to Resolve
Conflicts” on page 9-17.

Now that you have reviewed the results and ensured that there are no issues,
you are ready to apply the proposed data types to the model, as described in
“Apply Fixed-Point Data Types” on page 7-19.

Apply Fixed-Point Data Types

1 Click the Apply accepted fraction lengths button to write the proposed
data types to the model. &

The Fixed-Point Tool applies the data type proposals to the subsystem
blocks.

2 In the Fixed-Point Tool toolbar, select Show > All results.

The tool has set all the specified data types to the proposed types.

You are now ready to check that the new data types are acceptable, as
described in “Verify Fixed-Point Settings” on page 7-19.

Verify Fixed-Point Settings

Next, you simulate again using the new fixed-point settings. You then use
the Fixed-Point Tool plotting capabilities to compare the results from the
floating-point FPA_Reference run with the fixed-point results.

1 In the Fixed-Point Tool Model Hierarchy pane, select the Controller
Subsystem.

7-19

7 Automatically Converting a Floating-Point Model to Fixed Point

7-20

2 In the Data collection pane, set Store results in run to

Initial_fixed_point. You specify a new run name to prevent the tool
from overwriting the results that you want to retain in the FPA_Reference
run.

Click the Fixed-Point Tool Simulate button @ to run the simulation.

The Simulink software simulates using the new data types that you
applied in the previous step. Afterward, the Fixed-Point Tool displays
in its Contents pane information about blocks that logged fixed-point
data. The CompiledDT (compiled data type) column for the run shows
that the Controller Subsystem blocks use fixed-point data types with the
new data types.

Tip In the Contents pane, click the Run column heading to sort the runs.

Examine the results to verify that there are no overflows or saturations.

In the Fixed-Point Tool Model Hierarchy pane, select the Controller
Subsystem. In the Contents pane, select the Discrete Filter: Output
that corresponds to the FPA_Reference run, and then click the Compare
Signals button.

The Fixed-Point Tool plots the signal for the FPA_Reference and
Initial_fixed_point runs, as well as their difference. The difference plot
shows that the floating-point signal and the fixed-point signal are almost
identical, the difference is on the order of 10" -5.

Automatically Converting a Floating-Point Model to Fixed Point

[Simulation Data Inspector* EI@

File Plot Help
D d 8 FREARGE| e

| InspectS\gna\s| CompareSignals| CompareRuns|

Signals P
Sigl Sig2 Block Mame Signal Mame Line 01 K
FPA_Reference
=l FPA_Reference 0.08
F Chart SL_Chartl — 0.06
@ (8] Discrete Filter SL_Discrete F... ™=
0.04
Lookup Tabl.. SL_Lookup T.. ==
P Lookup Tabl... SL_Lockup T... == 0.02
=l Initial_Fixed Point
0 ! 1 iy i f
F Chart SL_Chartl
@ Discrete Filter SL_Discrete F... ™™= .02k

Leokup Tabl... SL_Lockup T...

Lookup Tabl... SL_Lockup T.. K
w10® Difference [-

—Difference

Now you are ready to test the fixed-point settings with new the input data,
as described in “Test Fixed-Point Settings With New Input Data” on page
7-21.

Test Fixed-Point Settings With New Input Data

You have successfully used the Fixed-Point Tool to propose fixed-point data
types for your model. In the previous step, you saw that the numerical results
for the double-precision system and the fixed-point system are very close.
These results indicate that the fixed-point data types are suitable for the
range of input data that you used. In practice, you might need to run multiple
simulations to cover the entire design range of your system and use the
results of these simulations to refine the fixed-point data types in your model.

7-21

7 Automatically Converting a Floating-Point Model to Fixed Point

7-22

In this part of the example, you continue working on the model. First, you
modify the range of the Sine Wave input and obtain simulation data based
on this new range. Then, you use the Fixed-Point Tool to refine the model
fixed-point settings based on the new simulation data. The Fixed-Point Tool
proposes new data types that can accommodate the new input range.

To change the range of the input data and test the fixed-point settings:

1 In the ex_fixed_point_workflow model, double-click the Sine Wave
Source block.

The Source Block Parameters dialog box opens.
2 In this dialog box, change the Amplitude to 2 and click OK.

3 In the Fixed-Point Tool Model Hierarchy pane , select the Controller
Subsystem.

4 In the Data collection pane, set Store results in run to Input2.

5 Click the Fixed-Point Tool Simulate button @ to run the simulation.

The Simulink software simulates the ex_fixed point workflow model.
The Stateflow debugger reports a data overflow error in the Stateflow chart.

6 In the Stateflow Debugging window, under Error checking options,
clear the Data Range option and close the debugger and the Chart.

This action disables data range error detection and allows the simulation
to run to completion.

7 In the Fixed-Point Tool Model Hierarchy pane, select the Controller
Subsystem.

The Fixed-Point Tool Contents pane displays the simulation results for
each block in the subsystem that logged fixed-point data. The tool stores
the results in the Input2 run.

In the Input2 run, the tool highlights in red the result for the Gain block,
indicating that there are issues.

Automatically Converting a Floating-Point Model to Fixed Point

8 Examine the result for the Gain block.

The result shows that the Gain block output saturated, which indicates
that the fixed-point data settings for this block are not suitable for the
new input range.

Next, override the fixed-point data types with doubles and simulate the
model again to obtain the ideal behavior of the subsystem, as described in
“Gather a Floating-Point Benchmark” on page 7-23.

Gather a Floating-Point Benchmark

Run the model with a global override of the fixed-point data types using
double-precision numbers to avoid quantization effects. This provides a
floating-point benchmark that represents the ideal output. The Simulink
software logs the signal logging results to the MATLAB workspace. The
Fixed-Point Tool displays the simulation results including minimum and
maximum values that occur during the run.

1 In the Fixed-Point Tool Model Hierarchy pane, select the Controller
Subsystem.

2 In the Settings for selected system pane, set Data type override to
Double.

Using this setting, the Fixed-Point Tool performs a global override of the
fixed-point data types and scaling using double-precision numbers, thus

avoiding quantization effects.

3 In the Data collection pane, set Store results in run to DTO_Input2.

4 Click the Fixed-Point Tool Simulate button g to run the simulation.

The Fixed-Point Tool highlights any simulation results that have issues,
such as overflows or saturations.

5 In the Contents pane, click the Run column to sort the runs. Verify that
there were no overflows or saturations in the DTO_Input2 run.

7-23

7 Automatically Converting a Floating-Point Model to Fixed Point

7-24

Propose Data Types for the New Input

Now, use the Fixed-Point Tool to propose fixed-point data types based on
the double-precision simulation results for the new input stored in the
DTO_Input2 run.

1 In the Fixed-Point Tool, click the Propose fraction lengths button °T .
2 In the Propose Data Types dialog box, select DTO_Input2 as the run to
use for proposing data types, and then click OK.

The Fixed-Point Tool proposes new data types for all objects in the model
and updates the results in the Contents pane.

3 In the Fixed-Point Tool, set the Column View to Automatic Data Typing
with Simulation Min/Max View to display information relevant to the
proposal. The tool displays the proposed data types in the ProposedDT
column in the Contents pane. The tool does not propose data types for
objects with inherited data types.

To accommodate the full simulation range, the Fixed-Point Tool proposes
new data types with reduced precision for the Chart/output and Gain block
output.

4 Examine the results to resolve any conflicts and to ensure that you want
to accept the proposed data type for each result.

In the Fixed-Point Tool toolbar, select Show > Conflicts with proposed
data types.

The Fixed-Point Tool detected no conflicts, so you are ready to apply the

new data types as described in “Apply the New Fixed-Point Data Types”
on page 7-24.

Apply the New Fixed-Point Data Types

1 Click Apply accepted fraction lengths B9 to write the proposed data
types to the model.

2 In the Apply Data Types dialog box, select DTO_Input2 as the run to use
for applying proposed data types and then click OK.

Automatically Converting a Floating-Point Model to Fixed Point

3 In the Fixed-Point Tool toolbar, select Show > All results.

The tool has set all the specified data types to the proposed types.

Verify New Fixed-Point Settings

Finally, you simulate again using the new fixed-point settings. You then
use the Fixed-Point Tool plotting capabilities to compare the results for the
initial and final fixed-point settings.

1 In the Fixed-Point Tool Model Hierarchy pane, select the Controller
Subsystem.

2 In the Settings for selected system pane, set Data type override to
Use local settings.

3 In the Data collection pane, set Store results in run to
Final_fixed_point.

4 Click Simulate to run the simulation.

The Simulink software simulates using the new data types that you applied
in the previous step and stores the results in the Final fixed_point run.

5 Examine the results to verify that there are no overflows or saturations.

6 In the Fixed-Point Tool Model Hierarchy pane , select the Controller
Subsystem. In the Contents pane, select the Discrete Filter: Output
that corresponds to the Initial_fixed_point run, and then click the
Compare Signals button.

HH

7 In the Compare Runs Selector dialog box, select Final fixed point,
and then click OK.

The Fixed-Point Tool plots the signal for both runs, as well as their
difference. The difference plot shows that the floating-point signal and

the fixed-point signal are identical.

8 Optionally, you can zoom in to view the steady-state region with greater
detail. From the Tools menu of the figure window, select Zoom In and

7-25

7 Automatically Converting a Floating-Point Model to Fixed Point

7-26

then drag the pointer to draw a box around the area you want to view
more closely.

Prepare for Code Generation

Optionally, use the Simulink Model Advisor to identify model settings that
might lead to nonoptimal results in code generation.

1 From the Simulink Analysis menu, select Model Advisor>Use Model

Advisor Ul

2 In the System Selector dialog box, select Controller Subsystem, and

then click OK.
In the Model Advisor left pane, expand the By Task node.
Expand the Code Generation Efficiency node.

Select and run Identify blocks that generate expensive saturation
and rounding code. This task optimizes the code to eliminate
unnecessary saturation and rounding.

The result is a warning because there are settings that can result in
nonoptimized code. The Fixed-Point Advisor identified that:

® The Gain block has the Saturate on integer overflow parameter
selected. This setting can result in unnecessary condition-checking code.

® The integer rounding mode selected for the model is Undefined. This
setting results in inefficient generated code.

Fix the warning conditions.

a Click Explore Result to open the Model Advisor Result Explorer.

b Clear the SaturateOnOverflow setting for the Gain block and close
the Model Advisor Result Explorer.

¢ In the Analysis Result box, click the Embedded Hardware properties
link to open the Configuration Parameters dialog box Hardware
Implementation pane.

d Set the Signed integer division rounds to parameter to Zero and
click OK to close the dialog box.

Automatically Converting a Floating-Point Model to Fixed Point

7 Rerun the task.
The task passes.

8 Select and run Identify questionable fixed-point operations. This
task identifies fixed-point operations that can lead to nonoptimal results.

The task passes.

7-27

7 Automatically Converting a Floating-Point Model to Fixed Point

7-28

Key Points to Remember

Convert subsystems within your model, rather than the entire model. This
practice saves time and avoids unnecessary conversions.

Use the Fixed-Point Advisor to prepare your model for conversion to fixed
point.

Use the Fixed-Point Tool to propose fixed-point data types for your model
or subsystem.

When using the Fixed-Point Advisor, consider saving a restore point before
applying recommendations.

A restore point provides a fallback in case the recommended data types
causes subsequent update diagram failure. If you do not save a restore
point and you encounter an update diagram failure, you must start the
conversion from the beginning.

Provide as much design minimum and maximum information as possible
before starting the conversion to fixed point.

Providing this information enables the fixed-point tools to choose
fixed-point data types that maximize precision and cover the range.

Specify minimum and maximum values for signals and parameters in the
model for:

= Inport and Outport blocks
= Block outputs

= The interface between MATLAB Function and C Chart blocks and the
Simulink model to ensure strong data typing

= Simulink.Signal objects

Ensure that you simulate the system using the full range of inputs.

If you use simulation minimum and maximum values to scale fixed-point
data types, the tools provide meaningful results when exercising the full
range of values over which your design is meant to run.

Where to Learn More

Where to Learn More

To learn more about...

See...

Fixed-Point Advisor capabilities

“Preparation for Fixed-Point Conversion” on
page 5-2

Best practices for using the Fixed-Point Advisor

“Best Practices” on page 5-2

Using restore points in the Fixed-Point Advisor

“Restore Points” on page 5-10

Fixed-Point Tool capabilities

“Overview of the Fixed-Point Tool” on page 6-2
fxptdlg

Best practices for using the Fixed-Point Tool

“Best Practices for Using the Fixed-Point Tool
to Propose Data Types for Your Simulink
Model” on page 9-5

Using the Fixed-Point Tool to merge multiple
simulation results

“Propose Data Types Using Multiple
Simulations” on page 9-63

7-29

7 Automatically Converting a Floating-Point Model to Fixed Point

7-30

Producing Lookup Table
Data

® “Producing Lookup Table Data” on page 8-2

* “Worst-Case Error for a Lookup Table” on page 8-3

® “Create Lookup Tables for a Sine Function” on page 8-6

® “Use Lookup Table Approximation Functions” on page 8-21

e “Effects of Spacing on Speed, Error, and Memory Usage” on page 8-22

8 Producing Lookup Table Data

8-2

Producing Lookup Table Data

A function lookup table is a method by which you can approximate a function
by a table with a finite number of points (X,Y). Function lookup tables

are essential to many fixed-point applications. The function you want to
approximate is called the ideal function. The X values of the lookup table
are called the breakpoints. You approximate the value of the ideal function
at a point by linearly interpolating between the two breakpoints closest

to the point.

In creating the points for a function lookup table, you generally want to
achieve one or both of the following goals:

e Minimize the worst-case error for a specified maximum number of
breakpoints

e Minimize the number of breakpoints for a specified maximum allowed error

“Create Lookup Tables for a Sine Function” on page 8-6 shows you how to
create function lookup tables using the function fixpt_look1_func_approx.
You can optimize the lookup table to minimize the number of data points, the
error, or both. You can also restrict the spacing of the breakpoints to be even
or even powers of two to speed up computations using the table.

“Worst-Case Error for a Lookup Table” on page 8-3 explains how to use the
function fixpt_look1_func_plot to find the worst-case error of a lookup
table and plot the errors at all points.

Worst-Case Error for a Lookup Table

Worst-Case Error for a Lookup Table

In this section...
“What Is Worst-Case Error for a Lookup Table?” on page 8-3

“Approximate the Square Root Function” on page 8-3

What Is Worst-Case Error for a Lookup Table?

The error at any point of a function lookup table is the absolute value of the
difference between the ideal function at the point and the corresponding Y
value found by linearly interpolating between the adjacent breakpoints. The
worst-case error, or maximum absolute error, of a lookup table is the maximum
absolute value of all errors in the interval containing the breakpoints.

For example, if the ideal function is the square root, and the breakpoints of
the lookup table are 0, 0.25, and 1, then in a perfect implementation of the
lookup table, the worst-case error is 1/8 = 0.125, which occurs at the point 1/16
= 0.0625. In practice, the error could be greater, depending on the fixed-point
quantization and other factors.

The section that follows shows how to use the function
fixpt_look1_func_plot to find the worst-case error of a lookup
table for the square root function.

Approximate the Square Root Function

This example shows how to use the function fixpt_look1_func_plot to find
the maximum absolute error for the simple lookup table whose breakpoints
are 0, 0.25, and 1. The corresponding Y data points of the lookup table, which
you find by taking the square roots of the breakpoints, are 0, 0.5, and 1.

To use the function fixpt_looki_func_plot, you need to define its
parameters first. To do so, type the following at the MATLAB prompt:

funcstr = 'sqrt(x)'; %Define the square root function

xdata = [0;.25;1]; %Set the breakpoints

ydata = sqrt(xdata); %Find the square root of the breakpoints
xmin = 0; %Set the minimum breakpoint

8 Producing Lookup Table Data

8-4

xmax = 1; %Set the maximum breakpoint

xdt = ufix(16); %Set the x data type

xscale = 27-16; %Set the x data scaling

ydt = sfix(16); %Set the y data type

yscale = 27-14; %Set the y data scaling
rndmeth = 'Floor'; %Set the rounding method

Next, type

errworst = fixpt_looki1_func_plot(xdata,ydata,funcstr,
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth)

This returns the worst-case error of the lookup table as the variable errworst:

errworst =
0.1250

It also generates the plots shown in the following figure. The upper box
(Outputs) displays a plot of the square root function with a plot of the
fixed-point lookup approximation underneath. The approximation is found by
linear interpolation between the breakpoints. The lower box (Absolute Error)
displays the errors at all points in the interval from 0 to 1. Notice that the
maximum absolute error occurs at 0.0625. The error at the breakpoints is 0.

Worst-Case Error for a Lookup Table

B Figure1 [][5 sl
File Edit View Inset Tools Desktop Window Help E

_hl_th;ﬂ h‘ +\-_\-€T?@i=h_¢£v @J DIE‘ EE

ldeal (red) Fixed-Point Lookup Approximation (blue)

Function sqrt(x)

05r

Qutputs

Absolute Errar

Table uses 3 unevenly spaced data points.

The input is Unsigned 16 Bit with 16 bits right of binary point

The output is Signed 16 Bit with 14 bits right of binary point

Maximum Absolute Error 0.12503 log2(MAE) =-2.9936 MAE/BIt = 2048.5
The least significant 12 bits of the output can be inaccurate.

The most significant nonsign bit of the output is used.

The remaining 3 nonsign bits of the output are used and always accurate.

The sign bit of the output is not used.

The rounding mode is to Floor

8-5

8 Producing Lookup Table Data

Create Lookup Tables for a Sine Function

In this section...

“Introduction” on page 8-6

“Parameters for fixpt_look1_func_approx” on page 8-6

“Setting Function Parameters for the Lookup Table” on page 8-8
“Using errmax with Unrestricted Spacing” on page 8-8

“Using nptsmax with Unrestricted Spacing” on page 8-11
“Using errmax with Even Spacing” on page 8-13

“Using nptsmax with Even Spacing” on page 8-14

“Using errmax with Power of Two Spacing” on page 8-16

“Using nptsmax with Power of Two Spacing” on page 8-17

“Specifying Both errmax and nptsmax” on page 8-19

“Comparison of Example Results” on page 8-20

Introduction

The sections that follow explain how to use the function
fixpt_look1_func_approx to create lookup tables. It gives

examples that show how to create lookup tables for the function sin(2mx) on
the interval from 0 to 0.25.

Parameters for fixpt_look1_func_approx
To use the function fixpt_look1_func_approx, you must first define its

parameters. The required parameters for the function are
e funcstr — Ideal function

¢ xmin — Minimum input of interest

¢ xmax — Maximum input of interest

® xdt — x data type

® xscale — x data scaling

Create Lookup Tables for a Sine Function

e ydt — y data type
® yscale — y data scaling

®* rndmeth — Rounding method
In addition there are three optional parameters:

* errmax — Maximum allowed error of the lookup table
® nptsmax — Maximum number of points of the lookup table

® spacing — Spacing allowed between breakpoints

You must use at least one of the parameters errmax and nptsmax. The next
section, “Setting Function Parameters for the Lookup Table” on page 8-8,
gives typical settings for these parameters.

Using Only errmax

If you use only the errmax parameter, without nptsmax, the function creates a
lookup table with the fewest points, for which the worst-case error is at most
errmax. See “Using errmax with Unrestricted Spacing” on page 8-8.

Using Only nptsmax

If you use only the nptsmax parameter without errmax, the function creates a
lookup table with at most nptsmax points, which has the smallest worse case
error. See “Using nptsmax with Unrestricted Spacing” on page 8-11.

The section “Specifying Both errmax and nptsmax” on page 8-19 describes
how the function behaves when you specify both errmax and nptsmax.

Spacing
You can use the optional spacing parameter to restrict the spacing between
breakpoints of the lookup table. The options are

® 'unrestricted' — Default.
e 'even' — Distance between any two adjacent breakpoints is the same.
® 'pow2' — Distance between any two adjacent breakpoints is the same

and the distance is a power of two.

8-7

8 Producing Lookup Table Data

The section “Restricting the Spacing” on page 8-12 and the examples that
follow it explain how to use the spacing parameter.

Setting Function Parameters for the Lookup Table

To do the examples in this section, you must first set parameter values for
the fixpt_look1_func_approx function. To do so, type the following at the
MATLAB prompt:

funcstr = 'sin(2*pi*x)'; %Define the sine function
xmin = 0; %Set the minimum input of interest

xmax = 0.25; %Set the maximum input of interest

xdt = ufix(16); %Set the x data type

xscale = 27-16; %Set the x data scaling

ydt = sfix(16); %Set the y data type

yscale = 27-14; %Set the y data scaling

rndmeth = 'Floor'; %Set the rounding method

errmax = 2”-10; %Set the maximum allowed error
nptsmax = 21; %Specify the maximum number of points

If you exit the MATLAB software after typing these commands, you must
retype them before trying any of the other examples in this section.

Using errmax with Unrestricted Spacing

The first example shows how to create a lookup table that has the fewest
data points for a specified worst-case error, with unrestricted spacing. Before
trying the example, enter the same parameter values given in the section
“Setting Function Parameters for the Lookup Table” on page 8-8, if you have
not already done so in this MATLAB session.

You specify the maximum allowed error by typing
errmax = 27-10;

Creating the Lookup Table

To create the lookup table, type

[xdata ydata errworst] = fixpt_look1_func_approx(funcstr,
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,[]);

Create Lookup Tables for a Sine Function

Note that the nptsmax and spacing parameters are not specified.
The function returns three variables:

® xdata, the vector of breakpoints of the lookup table
® ydata, the vector found by applying ideal function sin(2mx) to xdata

e errworst, which specifies the maximum possible error in the lookup table
The value of errworst is less than or equal to the value of errmax.
You can find the number of X data points by typing

length(xdata)

ans =
16

This means that 16 points are required to approximate sin(2mx) to within the
tolerance specified by errmax.

You can display the maximum error by typing errworst. This returns

errworst =
9.7656e-004

Plotting the Results
You can plot the output of the function fixpt look1_ func_plot by typing

fixpt_look1_func_plot(xdata,ydata,funcstr,xmin,xmax,xdt,
xscale,ydt,yscale,rndmeth);

The resulting plots are shown.

8-9

8 Producing Lookup Table Data

8-10

Figure 1 [-E]

File Edit View Inset Tools Desktop Window Help E

_hl_jdu.:j h‘ +\._\€T?@i=h_££v @J DIE‘ E

Function sin[2*pi"x) I|deal {red) Fixed-Point Loockup Appreximation (blue)

1 T T T
w
gx 05t i
G U 1 1 1 1
0 005 01 015 02 025
. x10"
E T T
I . . . \
s ! : !
3 g | | |
=
0 0.05 0.1 0.15 0.2 0.25

Input
Table uses 16 unevenly spaced data points.
The input is Unsigned 16 Bit with 16 bits right of binary point
The output is Signed 16 Bit with 14 bits right of binary point
Maximum Absolute Error 0.00097656 log2(MAE) =-10 MAE/yBIit = 16
The least significant 4 bits of the output can be inaccurate.
The most significant nonsign bit of the output is used.
The remaining 11 nonsign bits of the output are used and always accurate.
The sign bit of the output is not used.
The rounding mode is to Floor

The upper plot shows the ideal function sin(2mx) and the fixed-point lookup
approximation between the breakpoints. In this example, the ideal function
and the approximation are so close together that the two graphs appear to
coincide. The lower plot displays the errors.

In this example, the Y data points, returned by the function
fixpt_look1_func_approx as ydata, are equal to the ideal function applied
to the points in xdata. However, you can define a different set of values for
ydata after running fixpt_look1_func_plot. This can sometimes reduce
the maximum error.

Create Lookup Tables for a Sine Function

You can also change the values of xmin and xmax in order to evaluate the
lookup table on a subset of the original interval.

To find the new maximum error after changing ydata, xmin or xmax, type

errworst = fixpt_looki1_func_plot(xdata,ydata,funcstr,xmin,xmax, ...
xdt,xscale,ydt,yscale,rndmeth)

Using nptsmax with Unrestricted Spacing

The next example shows how to create a lookup table that minimizes the
worst-case error for a specified maximum number of data points, with
unrestricted spacing. Before starting the example, enter the same parameter
values given in the section “Setting Function Parameters for the Lookup
Table” on page 8-8, if you have not already done so in this MATLAB session.

Setting the Number of Breakpoints
You specify the number of breakpoints in the lookup table by typing

nptsmax = 21;

Creating the Lookup Table
Next, type

[xdata ydata errworst] = fixpt_look1_func_approx(funcstr,
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,[],nptsmax);

The empty brackets, [], tell the function to ignore the parameter errmax,
which is not used in this example. Omitting errmax causes the function
fixpt_look1_func_approx to return a lookup table of size specified by
nptsmax, with the smallest worst-case error.

The function returns a vector xdata with 21 points. You can find the
maximum error for this set of points by typing errworst at the MATLAB
prompt. This returns

errworst =
5.1139e-004

8-11

8 Producing Lookup Table Data

Plotting the Results
To plot the lookup table along with the errors, type

fixpt_look1_func_plot(xdata,ydata,funcstr,xmin,xmax,xdt,
xscale,ydt,yscale,rndmeth);

The resulting plots are shown.

Figure1 [][]l

File Edit View Inset Tools Desktop Window Help

D de | | RRODE LS 0E 0D

Function sin(2*pi*x) Ideal (red) Fixed-Point Lookup Approximation (blue)

1 T T
i
3 05} i
a
U 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25
5
]
€
£
wn
0
< 7 0.05 0.1 015 0.2 0.25

Input
Table uses 21 unevenly spaced data points.
The input is Unsigned 16 Bit with 16 bits right of binary point
The output is Signed 16 Bit with 14 bits night of binary point
Maximum Absolute Error 0.00051139 log2(MAE) =-10.9333 MAE/yBit = 8.3785
The least significant 4 bits of the output can be inaccurate.
The most significant nonsign bit of the output is used.
The remaining 11 nonsign bits of the output are used and always accurate.
The sign bit of the output is not used.
The rounding mode is to Floor

Restricting the Spacing
In the previous two examples, the function fixpt_look1_func_approx
creates lookup tables with unrestricted spacing between the breakpoints. You

8-12

Create Lookup Tables for a Sine Function

can restrict the spacing to improve the computational efficiency of the lookup
table, using the spacing parameter.

The options for spacing are

® 'unrestricted' — Default.
e 'even' — Distance between any two adjacent breakpoints is the same.
® 'pow2' — Distance between any two adjacent breakpoints is the same

and is a power of two.

Both power of two and even spacing increase the computational speed of
the lookup table and use less command read-only memory (ROM). However,
specifying either of the spacing restrictions along with errmax usually
requires more data points in the lookup table than does unrestricted spacing
to achieve the same degree of accuracy. The section “Effects of Spacing on
Speed, Error, and Memory Usage” on page 8-22 discusses the tradeoffs
between different spacing options.

Using errmax with Even Spacing

The next example shows how to create a lookup table that has evenly spaced
breakpoints and a specified worst-case error. To try the example, you must
first enter the parameter values given in the section “Setting Function
Parameters for the Lookup Table” on page 8-8, if you have not already done
so in this MATLAB session.

Next, at the MATLAB prompt type

spacing = 'even';
[xdata ydata errworst] = fixpt_look1_func_approx(funcstr,
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,[],spacing);

You can find the number of points in the lookup table by typing
length(xdata):

ans =
20

To plot the lookup table along with the errors, type

8-13

8 Producing Lookup Table Data

8-14

fixpt_look1_func_plot(xdata,ydata,funcstr,xmin,xmax,xdt,
xscale,ydt,yscale,rndmeth);

This produces the following plots:

Figure1 [][]l

File Edit View Inset Tools Desktop Window Help E

D de | | RRODE LS 0E 0D

Function sin(2*pi*x) Ideal (red) Fixed-Point Lookup Approximation (blue)

1 T T T
i
3 05} i
a
U 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25
. x10”
E T T T T
i i i ' ;
PR HE. A\
= : ! ! :
2,) | | i
<5 0.05 0.1 015 0.2 0.25

Input
Table uses 20 evenly spaced data points.
The input is Unsigned 16 Bit with 16 bits right of binary point
The output is Signed 16 Bit with 14 bits night of binary point
Maximum Absolute Error 0.00092109 log2(MAE) =-10.0844 MAE/yBit = 15.0912
The least significant 4 bits of the output can be inaccurate.
The most significant nonsign bit of the output is not used.
The remaining 10 nonsign bits of the output are used and always accurate.
The sign bit of the output is not used.
The rounding mode is to Floor

Using nptsmax with Even Spacing

The next example shows how to create a lookup table that has evenly spaced
breakpoints and minimizes the worst-case error for a specified maximum
number of points. To try the example, you must first enter the parameter
values given in the section “Setting Function Parameters for the Lookup
Table” on page 8-8, if you have not already done so in this MATLAB session.

Create Lookup Tables for a Sine Function

Next, at the MATLAB prompt type
spacing = 'even';

[xdata ydata errworst] = fixpt_looki1_func_approx(funcstr,
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,[],nptsmax,spacing);

The result requires 21 evenly spaced points to achieve a maximum absolute
error of 2*-10.2209.

To plot the lookup table along with the errors, type

fixpt_look1_func_plot(xdata,ydata,funcstr,xmin,xmax,xdt,
xscale,ydt,yscale,rndmeth);

Figure 1 [-E]

File Edit View Inset Tools Desktop Window Help E

_hl_jdu.:j h‘ +\._\€T?@i=h_££v @J DIE‘ E

Function sin[2*pi"x) I|deal {red) Fixed-Point Loockup Appreximation (blue)

-1 T T
»
2 05} i
3
U 1 1 1 1
0 005 01 015 02 025
. x10"
E T T T T
I ! ! ! :
] Aoy HaViVATAYAYRTRIRIETETATE
E 1 1 1 1
= . . :
2
< 7 0.05 0.1 0.15 0.2 0.25
Input

Table uses 21 evenly spaced data points.

The input is Unsigned 16 Bit with 16 bits right of binary point

The output is Signed 16 Bit with 14 bits right of binary point

Maximum Absolute Error 0.00083793 log2(MAE) = -10.2209 MAE/yBit = 13.7287
The least significant 4 bits of the output can be inaccurate.

The most significant nonsign bit of the output is not used.

The remaining 10 nonsign bits of the output are used and always accurate.

The sign bit of the output is not used.

The rounding mode is to Floor

8-15

8 Producing Lookup Table Data

8-16

Using errmax with Power of Two Spacing

The next example shows how to construct a lookup table that has power

of two spacing and a specified worst-case error. To try the example, you
must first enter the parameter values given in the section “Setting Function
Parameters for the Lookup Table” on page 8-8, if you have not already done
so in this MATLAB session.

Next, at the MATLAB prompt type
spacing = 'pow2';
[xdata ydata errworst] = ...

fixpt_look1_func_approx(funcstr,xmin,
xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,[],spacing);

To find out how many points are in the lookup table, type

length(xdata)

ans =
33

This means that 33 points are required to achieve the worst-case error
specified by errmax. To verify that these points are evenly spaced, type

widths = diff(xdata)

This generates a vector whose entries are the differences between consecutive
points in xdata. Every entry of widths is 2°7.

To find the maximum error for the lookup table, type

errworst

errworst =
3.7209e-004

This is less than the value of errmax.

To plot the lookup table data along with the errors, type

fixpt_look1_func_plot(xdata,ydata,funcstr,xmin,xmax,xdt,

Create Lookup Tables for a Sine Function

xscale,ydt,yscale,rndmeth);

This displays the plots shown.

Figure1 [][]l

File Edit View Inset Tools Desktop Window Help

_hl_jnﬂ..:j h‘ +_\€-r?@.=h_.'£' @.—' DIZ‘ E

Function sin(2*pi*x) Ideal (red) Fixed-Point Lookup Approximation (blue)

1 T T
i
2 05t _
3
U | | | 1
0 0.05 0.1 0.15 0.2 0.25
S
|
L]
=
=
< 0.05 0.1 0.15 0.2 0.25
Input

Table uses 33 power of 2 spaced data points.

The input is Unsigned 16 Bit with 16 bits right of binary point

The output is Signed 16 Bit with 14 bits night of binary point

Maximum Absolute Error 0.00037209 log2(MAE) =-11.3921 MAE/yBit = 6.0964
The least significant 3 bits of the output can be inaccurate.

The most significant nonsign bit of the output is used.

The remaining 12 nonsign bits of the output are used and always accurate.

The sign bit of the output is not used.

The rounding mode is to Floor

Using nptsmax with Power of Two Spacing

The next example shows how to create a lookup table that has power of two
spacing and minimizes the worst-case error for a specified maximum number
of points. To try the example, you must first enter the parameter values given
in the section “Setting Function Parameters for the Lookup Table” on page
8-8, if you have not already done so in this MATLAB session:

8-17

8 Producing Lookup Table Data

spacing = 'pow2';
[xdata ydata errworst] = fixpt_look1_func_approx(funcstr,
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,[],nptsmax,spacing);

The result requires 17 points to achieve a maximum absolute error of
2°-9.6267.

To plot the lookup table along with the errors, type

fixpt_looki_func_plot(xdata,ydata,funcstr,xmin,xmax,xdt,
xscale,ydt,yscale,rndmeth);

This produces the plots shown below:

Figure 1 [-E]

File Edit View Inset Tools Desktop Window Help E

_hl_jdu.:j h‘ +\._\€T?@i=h_¢£v @J DIE‘ E

Function sin[2*pi"x) I|deal {red) Fixed-Point Loockup Appreximation (blue)

1 T T
®
2 05} i
=
(]

U 1 1 1 1

0 005 01 015 02 025

S
|
=
=
[=]
w
e
g

Input
Table uses 17 power of 2 spaced data points.
The input is Unsigned 16 Bit with 16 bits right of binary point
The output is Signed 16 Bit with 14 bits right of binary point
Maximum Absolute Error 0.0012649 log2(MAE) = -9.6267 MAE/NBIt = 20.7245
The least significant 5 bits of the output can be inaccurate.
The most significant nonsign bit of the output is used.
The remaining 10 nonsign bits of the output are used and always accurate.
The sign bit of the output is not used.
The rounding mode is to Floor

8-18

Create Lookup Tables for a Sine Function

Specifying Both errmax and nptsmax

If you include both the errmax and the nptsmax parameters, the function
fixpt_look1_func_approx tries to find a lookup table with at most nptsmax
data points, whose worst-case error is at most errmax. If it can find a lookup
table meeting both conditions, it uses the following order of priority for
spacing:

1 Power of two
2 Even

3 Unrestricted

If the function cannot find any lookup table satisfying both conditions, it
ignores nptsmax and returns a lookup table with unrestricted spacing, whose
worst-case error is at most errmax. In this case, the function behaves the
same as if the nptsmax parameter were omitted.

Using the parameters described in the section “Setting Function Parameters
for the Lookup Table” on page 8-8, the following examples illustrate the
results of using different values for nptsmax when you enter

[xdata ydata errworst] = fixpt_look1_func_approx(funcstr,
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,nptsmax);

The results for three different settings for nptsmax are as follows:

e nptsmax = 33; — The function creates the lookup table with 33 points
having power of two spacing, as in Example 3.

® nptsmax = 21; — Because the errmax and nptsmax conditions cannot be
met with power of two spacing, the function creates the lookup table with
20 points having even spacing, as in Example 5.

® nptsmax = 16; — Because the errmax and nptsmax conditions cannot be
met with either power of two or even spacing, the function creates the
lookup table with 16 points having unrestricted spacing, as in Example 1.

8-19

8 Producing Lookup Table Data

Comparison of Example Results

The following table summarizes the results for the examples. Note that when
you specify errmax, even spacing requires more data points than unrestricted,
and power of two spacing requires more points than even spacing.

Worst-Case Number of
Example Options Spacing Error Points in Table
1 errmax=2"-10 ‘unrestricted’ 27-10 16
2 nptsmax=21 'unrestricted’ 27-10.933 21
3 errmax=2"-10 "even' 27-10.0844 20
4 nptsmax=21 ‘even' 27-10.2209 21
5 errmax=2"-10 "pow2'’ 2”-11.3921 33
6 nptsmax=21 "pow2'’ 27-9.627 17

8-20

Use Lookup Table Approximation Functions

Use Lookup Table Approximation Functions

The following steps summarize how to use the lookup table approximation
functions:

1 Define:
a The ideal function to approximate
b The range, xmin to xmax, over which to find X and Y data

¢ The fixed-point implementation: data type, scaling, and rounding
method

d The maximum acceptable error, the maximum number of points, and
the spacing

2 Run the fixpt_look1_ func_approx function to generate X and Y data.

3 Use the fixpt_look1_func_plot function to plot the function and error
between the ideal and approximated functions using the selected X and Y

data, and to calculate the error and the number of points used.

4 Vary input criteria, such as errmax, nptsmax, and spacing, to produce sets

of X and Y data that generate functions with varying worst-case error,
number of points required, and spacing.

5 Compare results of the number of points required and maximum absolute

error from various runs to choose the best set of X and Y data.

8-21

8 Producing Lookup Table Data

8-22

Effects of Spacing on Speed, Error, and Memory Usage

In this section...

“Criteria for Comparing Types of Breakpoint Spacing” on page 8-22
“Model That Illustrates Effects of Breakpoint Spacing” on page 8-22
“Data ROM Required for Each Lookup Table” on page 8-23
“Determination of Out-of-Range Inputs” on page 8-24

“How the Lookup Tables Determine Input Location” on page 8-24
“Interpolation for Each Lookup Table” on page 8-26

“Summary of the Effects of Breakpoint Spacing” on page 8-29

Criteria for Comparing Types of Breakpoint Spacing

The sections that follow compare implementations of lookup tables that
use breakpoints whose spacing is uneven, even, and power of two. The
comparison focuses on:

¢ Execution speed of commands

® Rounding error during interpolation

¢ The amount of read-only memory (ROM) for data

¢ The amount of ROM for commands

This comparison is valid only when the breakpoints are not tunable. If the

breakpoints are tunable in the generated code, all three cases generate the

same code. For a summary of the effects of breakpoint spacing on execution

speed, error, and memory usage, see “Summary of the Effects of Breakpoint
Spacing” on page 8-29.

Model That lllustrates Effects of Breakpoint Spacing

This comparison uses the model fxpdemo_approx_sin. Three fixed-point
lookup tables appear in this model. All three tables approximate the function
sin(2*pi*u) over the first quadrant and achieve a worst-case error of less

Effects of Spacing on Speed, Error, and Memory Usage

than 2~-8. However, they have different restrictions on their breakpoint
spacing.

You can use the model fxpdemo_approx, which fxpdemo_approx_sin opens,
to generate Simulink Coder code (Simulink Coder software license required).
The sections that follow present several segments of generated code to
emphasize key differences.

To open the model, type at the MATLAB prompt:
fxpdemo_approx_sin

Data ROM Required for Each Lookup Table

This section looks at the data ROM required by each of the three spacing
options.

Uneven Case
Uneven spacing requires both Y data points and breakpoints:

int16_T yuneven[8];
uint16_T xuneven[8];

The total bytes used is 32.

Even Case
Even spacing requires only Y data points:

int16_T yeven[10];

The total bytes used is 20. The breakpoints are not explicitly required. The
code uses the spacing between the breakpoints, and might use the smallest
and largest breakpoints. At most, three values related to the breakpoints
are necessary.

Power of Two Case
Power of two spacing requires only Y data points:

int16_T ypow2[17];

8-23

8 Producing Lookup Table Data

8-24

The total bytes used is 34. The breakpoints are not explicitly required. The
code uses the spacing between the breakpoints, and might use the smallest
and largest breakpoints. At most, three values related to the breakpoints
are necessary.

Determination of Out-of-Range Inputs

In all three cases, you must guard against the chance that the input is less
than the smallest breakpoint or greater than the biggest breakpoint. There
can be differences in how occurrences of these possibilities are handled.
However, the differences are generally minor and are normally not a key factor
in deciding to use one spacing method over another. The subsequent sections
assume that out-of-range inputs are impossible or have already been handled.

How the Lookup Tables Determine Input Location

This section describes how the three fixed-point lookup tables determine
where the current input is relative to the breakpoints.

Uneven Case

Unevenly-spaced breakpoints require a general-purpose algorithm such as a
binary search to determine where the input lies in relation to the breakpoints.
The following code provides an example:

iLeft = 0;
iRght = 7; /* number of breakpoints minus 1 */

while ((iRght - ilLeft) > 1)
{
i = (iLeft + iRght) >> 1;

if (uAngle < xuneven[i])

{

iRght = i;
}
else
{

iLeft = 1i;
}

Effects of Spacing on Speed, Error, and Memory Usage

}

The while loop executes up to log2(N) times, where N is the number of
breakpoints.

Even Case

Evenly-spaced breakpoints require only one step to determine where the
input lies in relation to the breakpoints:

iLeft = uAngle / 455U;

The divisor 455U represents the spacing between breakpoints. In general, the
dividend would be (uAngle - SmallestBreakPoint). In this example, the
smallest breakpoint is zero, so the code optimizes out the subtraction.

Power of Two Case

Power of two spaced breakpoints require only one step to determine where the
input lies in relation to the breakpoints:

iLeft = uAngle >> 8;

The number of shifts is 8 because the breakpoints have spacing 2°8. The
smallest breakpoint is zero, so UAngle replaces the general case of (uUAngle -
SmallestBreakPoint).

Comparison

To determine where the input lies with respect to the breakpoints, the
unevenly-spaced case requires much more code than the other two cases.
This code requires additional command ROM. If many lookup tables share
the binary search algorithm as a function, you can reduce this ROM penalty.
Even if the code is shared, the number of clock cycles required to determine
the location of the input is much higher for the unevenly-spaced cases than
the other two cases. If the code is shared, function-call overhead decreases
the speed of execution a little more.

In the evenly-spaced case and the power of two spaced case, you can determine
the location of the input with a single line of code. The evenly-spaced case
uses a general integer division. The power of two case uses a shift instead

of general division because the divisor is an exact power of two. Without

8-25

8 Producing Lookup Table Data

8-26

knowing the specific processor, you cannot be certain that a shift is better
than division.

Many processors can implement division with a single assembly language
instruction, so the code will be small. However, this instruction often
takes many clock cycles to complete. Many processors do not provide a
division instruction. Division on these processors occurs through repeated
subtractions. This process is slow and requires a lot of machine code, but
this code can be shared.

Most processors provide a way to do logical and arithmetic shifts left and
right. A key difference is whether the processor can do N shifts in one
instruction (barrel shift) or requires N instructions that shift one bit at a time.
The barrel shift requires less code. Whether the barrel shift also increases
speed depends on the hardware that supports the operation.

The compiler can also complicate the comparison. In the previous example,
the command uAngle >> 8 essentially takes the upper 8 bits in a 16-bit word.
The compiler can detect this situation and replace the bit shifts with an
instruction that takes the bits directly. If the number of shifts is some other
value, such as 7, this optimization would not occur.

Interpolation for Each Lookup Table

In theory, you can calculate the interpolation with the following code:

y = (ybata[iRght] - yData[iLeft]) * (u - xData[iLeft])
/ (xData[iRght] - xData[iLeft]) + yData[iLeft]

The term (xData[iRght] - xData[iLeft]) is the spacing between
neighboring breakpoints. If this value is constant, due to even spacing, some
simplification is possible. If spacing is not just even but also a power of two,
significant simplifications are possible for fixed-point implementations.

Uneven Case

For the uneven case, one possible implementation of the ideal interpolation
in fixed point is as follows:

xNum = uAngle - xuneven[iLeft];
xDen xuneven[iRght] - xuneven[ilLeft];

Effects of Spacing on Speed, Error, and Memory Usage

yDiff = yuneven[iRght] - yuneven[iLeft];
MUL_S32_S16_U16(bigProd, yDiff, xNum);
DIV_NZP_S16_S32 U16_FLOOR(yDiff, bigProd, xDen);
yUneven = yuneven[ilLeft] + yDiff;
The multiplication and division routines are not shown here. These routines

can be complex and depend on the target processor. For example, these
routines look different for a 16-bit processor than for a 32-bit processor.

Even Case

Evenly-spaced breakpoints implement interpolation using slightly different
calculations than the uneven case. The key difference is that the calculations
do not directly use the breakpoints. When the breakpoints are not required in
ROM, you can save a lot of memory:

xNum = uAngle - (iLeft * 455U);
yDiff = yeven[iLeft+1] - yeven[ilLeft];
MUL_S32_S16_U16(bigProd, yDiff, xNum);
DIV_NZP_S16_S32_U16_FLOOR(yDiff, bigProd, 455U);

yEven = yeven[iLeft] + yDiff;
Power of Two Case
Power of two spaced breakpoints implement interpolation using very different
calculations than the other two cases. As in the even case, breakpoints are
not used in the generated code and therefore not required in ROM:
lambda = uAngle & OxOOFFU;

yPow2 = ypow2[iLeft)+1] - ypow2[iLeft];

MUL_S16_U16_S16_SR8(yPow2,lambda,yPow2);

8-27

8 Producing Lookup Table Data

8-28

yPow2 += ypow2[ilLeft];

This implementation has significant advantages over the uneven and even
implementations:

e A bitwise AND combined with a shift right at the end of the multiplication
replaces a subtraction and a division.

® The term (u - xData[iLeft]) / (xData[iRght] - xData[iLeft])
results in no loss of precision, because the spacing is a power of two.

In contrast, the uneven and even cases usually introduce rounding error in
this calculation.

Effects of Spacing on Speed, Error, and Memory Usage

Summary of the Effects of Breakpoint Spacing

The following table summarizes the effects of breakpoint spacing on execution
speed, error, and memory usage.

Parameter

Even Power of 2
Spaced Data

Evenly Spaced Data

Unevenly Spaced
Data

Execution speed

The execution speed
is the fastest. The
position search and
interpolation are

the same as for
evenly-spaced data.
However, to increase
the speed more, a
bit shift replaces the
position search, and a
bit mask replaces the

The execution speed
is faster than that for
unevenly-spaced data,
because the position
search is faster and
the interpolation
requires a simple
division.

The execution speed
is the slowest of the
different spacings
because the position
search is slower, and
the interpolation
requires more
operations.

interpolation.

Error The error can be The error can be The error can be
larger than that for larger than that for smaller because
unevenly-spaced unevenly-spaced approximating
data because data because a function with
approximating approximating nonuniform curvature
a function with a function with requires fewer points
nonuniform curvature | nonuniform curvature | to achieve the same
requires more points | requires more points accuracy.
to achieve the same to achieve the same
accuracy. accuracy.

ROM usage Uses less command Uses less command Uses more command
ROM, but more data ROM, but more data ROM, but less data
ROM. ROM. ROM.

RAM usage Not significant. Not significant. Not significant.

The number of Y data points follows the expected pattern. For the same
worst-case error, unrestricted spacing (uneven) requires the fewest data
points, and power-of-two-spaced breakpoints require the most. However, the
implementation for the evenly-spaced and the power of two cases does not

8-29

8 Producing Lookup Table Data

8-30

need the breakpoints in the generated code. This reduces their data ROM
requirements by half. As a result, the evenly-spaced case actually uses less
data ROM than the unevenly-spaced case. Also, the power of two case requires
only slightly more ROM than the uneven case. Changing the worst-case error
can change these rankings. Nonetheless, when you compare data ROM usage,
you should always take into account the fact that the evenly-spaced and power
of two spaced cases do not require their breakpoints in ROM.

The effort of determining where the current input is relative to the
breakpoints strongly favors the evenly-spaced and power of two spaced cases.
With uneven spacing, you use a binary search method that loops up to log2(N)
times. With even and power of two spacing, you can determine the location
with the execution of one line of C code. But you cannot decide the relative
advantages of power of two versus evenly spaced without detailed knowledge
of the hardware and the C compiler.

The effort of calculating the interpolation favors the power of two case, which
uses a bitwise AND operation and a shift to replace a subtraction and a
division. The advantage of this behavior depends on the specific hardware,
but you can expect an advantage in code size, speed, and also in accuracy. The
evenly-spaced case calculates the interpolation with a minor improvement in
efficiency over the unevenly-spaced case.

Automatic Data Typing

® “About Automatic Data Typing” on page 9-2

¢ “Before Using the Fixed-Point Tool to Propose Data Types for Your
Simulink Model” on page 9-3

* “Best Practices for Using the Fixed-Point Tool to Propose Data Types for
Your Simulink Model” on page 9-5

® “Models That Might Cause Data Type Propagation Errors” on page 9-8
e “Automatic Data Typing Using Simulation Data” on page 9-11

® “Automatic Data Typing Using Derived Minimum and Maximum Values”
on page 9-24

® “Propose Fraction Lengths” on page 9-38

* “Propose Word Lengths” on page 9-54

® “Propose Data Types Using Multiple Simulations” on page 9-63
* “View Simulation Results” on page 9-69

* “Viewing Results With the Simulation Data Inspector” on page 9-75

9 Automatic Data Typing

9-2

About Automatic Data Typing

The Fixed-Point Tool automates the task of specifying fixed-point data types
in a Simulink model. The tool collects range data for model objects, either
from design minimum and maximum values that objects specify explicitly,
from logged minimum and maximum values that occur during simulation, or
from minimum and maximum values derived using range analysis. Based on
these values, the tool proposes fixed-point data types that maximize precision
and cover the range. The tool allows you to review the data type proposals
and then apply them selectively to objects in your model.

You can use the Fixed-Point Tool to select data types automatically for your
model using the following methods.

Automatic Data Typing
Method

Advantages

Disadvantages

Using simulation minimum
and maximum values

e Useful if you know the
inputs to use for the model.

®* You do not need to
specify any design range
information.

® Not always feasible to
collect full simulation
range.

¢ Simulation might take a
very long time.

Using design minimum and
maximum values

You can use this method if
the model contains blocks
that range analysis does not
support. However, if possible,
use simulation data to propose
data types.

¢ Design range often available
only on some input and
output signals.

e (Can propose data types only
for signals with specified
design minimum and
maximum values.

Using derived minimum and
maximum values

You do not have to simulate
multiple times to ensure that
simulation data covers the full
intended operating range.

¢ Derivation might take a
very long time.

Before Using the Fixed-Point Tool to Propose Data Types for Your Simulink® Model

Before Using the Fixed-Point Tool to Propose Data Types
for Your Simulink Model

Before you use the Fixed-Point Tool to autoscale your Simulink model,
consider how automatic data typing affects your model:

¢ The Fixed-Point Tool proposes new data types for the fixed-point data
types in your model. If you choose to apply the proposed data types, the
tool changes the data types in your model. Before using the Fixed-Point
Tool, back up your model and workspace variables to ensure that you
can recover your original data type settings and capture the fixed-point
instrumentation and data type override settings using the Shortcut Editor.

For more information, see “Best Practices for Using the Fixed-Point Tool to
Propose Data Types for Your Simulink Model” on page 9-5.

® Before proposing data types, verify that you can update diagram
successfully . Sometimes, changing the data types in your model results
in subsequent update diagram errors. Immediately before and after
applying data type proposals, it is good practice to test update diagram
again. This practice enables you to fix any errors before making further
modifications to your model.

For more information, see “Update a Block Diagram”.

® The Fixed-Point Tool alerts you to potential issues with proposed data
types for each object in your model:

= If the Fixed-Point Tool detects that the proposed data type introduces
data type errors when applied to an object, the tool marks the object
with an error, . You must inspect this proposal and fix the problem in
the Simulink model. After fixing the problem, rerun the simulation and
generate a proposal again to confirm that you have resolved the issue.

For more information, see “Examine Results to Resolve Conflicts” on
page 9-17.

= If the Fixed-Point Tool detects that the proposed data type poses
potential issues for an object, the tool marks the object with a yellow
caution, I Review the proposal before accepting it.

= If the Fixed-Point Tool detects that the proposed data type poses no
issues for an object, the tool marks the object with a green check, .

9-3

9 Automatic Data Typing

Caution The Fixed-Point Tool does not detect all potential data type
issues. If the Fixed-Point Tool does not detect any issues for your model,
it is still possible to experience subsequent data type propagation
issues. For more information, see “Models That Might Cause Data Type
Propagation Errors” on page 9-8.

9-4

Best Practices for Using the Fixed-Point Tool to Propose Data Types for Your Simulink® Model

Best Practices for Using the Fixed-Point Tool to Propose
Data Types for Your Simulink Model

Use a Known Working Simulink Model

Before you begin automatic data typing, verify that update diagram
succeeds for your model. To update the diagram, press Ctrl+D. If update
diagram fails, before automatic data typing to propose data types, fix the
failure in your model.

Back Up Your Simulink Model

Before using the Fixed-Point Tool, back up your Simulink model and
associated workspace variables.

Backing up your model provides a back-up of your original model in case of
error and a baseline for testing and validation.

Capture the Current Fixed-Point Instrumentation and
Data Type Override Settings

Before changing these settings, use the Fixed-Point Tool Shortcut Editor to

create a shortcut for these settings. Creating a shortcut allows you to revert
to the original model settings. For more information, see “Capture Current

Model Settings Using the Shortcut Editor” on page 6-10.

Convert Individual Subsystems

Convert individual subsystems in your model one at a time. This practice
facilitates debugging by isolating the source of fixed-point issues. For
example, see “Debug a Fixed-Point Model” on page 6-12.

Isolate the System Under Conversion

If you encounter data type propagation issues with a particular subsystem
during the conversion, isolate this subsystem by placing Data Type Conversion
blocks on the inputs and outputs of the system. The Data Type Conversion
block converts an input signal of any Simulink data type to the data type

9 Automatic Data Typing

9-6

and scaling you specify for its Output data type parameter. This practice
enables you to continue automatic data typing for the rest of your model.

Use Lock Output Data Type Setting

You can prevent the Fixed-Point Tool from replacing the current data
type. Use the Lock output data type setting against changes by the
fixed-point tools parameter that is available on many blocks. The default
setting allows for replacement. Use this setting when:

® You already know the fixed-point data types that you want to use for a
particular block.

For example, the block is modeling a real-world component. Set up the
block to allow for known hardware limitations, such as restricting outputs
to integer values.

Explicitly specify the output data type of the block and select Lock output
data type setting against changes by the fixed-point tools.

® You are debugging a model and know that a particular block accepts only
certain input signal data types.

Explicitly specify the output data type of upstream blocks and select Lock
output data type setting against changes by the fixed-point tools.

Save Simulink Signal Objects

If your model contains Simulink signal objects and you accept proposed data
types, the Fixed-Point Tool automatically applies the changes to the signal
objects. However, the Fixed-Point Tool does not automatically save changes
that it makes to Simulink signal objects. To preserve changes, before closing
your model, save the Simulink signal objects in your workspace and model.

Test Update Diagram Failure

Immediately after applying data type proposals, test update diagram. If
update diagram fails, perform one of the following actions:

e Use the failure information to fix the errors in your model. After fixing the
errors, test update diagram again.

Best Practices for Using the Fixed-Point Tool to Propose Data Types for Your Simulink® Model

e If you are unable to fix the errors, restore your back-up model. After
restoring the model, try to fix the errors by, for example, locking output
data type settings and isolating the system, as described in the preceding
sections. After addressing the errors, test update diagram again.

9-7

9 Automatic Data Typing

Models That Might Cause Data Type Propagation Errors

9-8

When the Fixed-Point Tool proposes changes to the data types in your model,
it alerts you to potential issues. If the Fixed-Point Tool alerts you to data
type errors, you must diagnose the errors and fix the problems. For more
information, see “Examine Results to Resolve Conflicts” on page 9-17.

The Fixed-Point Tool does not detect all potential data type issues. If the tool
does not report any issues for your model, it is still possible to experience

subsequent data type propagation errors. Before you use the Fixed-Point Tool,

back up your model to ensure that you can recover your original data type
settings. For more information, see “Best Practices for Using the Fixed-Point
Tool to Propose Data Types for Your Simulink Model” on page 9-5.

The following models are likely to cause data type propagation issues.

Model Uses...

Fixed-Point Tool
Behavior

Data Type Propagation
Issue

Buses Does not detect the Fixed-Point Tool might
minimum, maximum, | propose data types that are
data type, and initial | inconsistent with the data
value information types for the bus object or
for bus objects and generate proposals that
does not use them for | cause overflows.
automatic data typing.

Simulink Does not consider Fixed-Point Tool might

parameter objects

any data type
information for
Simulink parameter
objects and does not
use them for automatic
data typing.

propose data types that are
inconsistent with the data
types for the parameter
object or generate proposals
that cause overflows.

Models That Might Cause Data Type Propagation Errors

Model Uses... Fixed-Point Tool Data Type Propagation
Behavior Issue

User-defined Cannot detect ¢ The user-defined

S-functions the operation S-function accepts
of user-defined only certain input data
S-functions. types. The Fixed-Point

Tool cannot detect

this requirement and
proposes a different data
type upstream of the
S-function. Update
diagram fails on the
model due to data type
mismatch errors.

¢ The user-defined
S-function specifies certain
output data types. The
Fixed-Point Tool is not
aware of this requirement
and does not use it for
automatic data typing.
Therefore, the tool might
propose data types that are
inconsistent with the data
types for the S-function or
generate proposals that
cause overflows.

User-defined Has no knowledge of Fixed-Point Tool might

masked the masked subsystem | propose data types that

subsystems workspace and cannot | are inconsistent with the
take this subsystem requirements of the masked
into account when subsystem, particularly if
proposing data types. the subsystem uses mask

initialization. The proposed
data types might cause data
type mismatch errors or
overflows.

9-9

9 Automatic Data Typing

9-10

Model Uses...

Fixed-Point Tool
Behavior

Data Type Propagation
Issue

Linked subsystems

Does not include linked
subsystems when
proposing data types.

Data type mismatch errors
might occur at the linked
subsystem boundaries.

MATLAB Function
blocks

Does not propose data
types for MATLAB
Function blocks.

Fixed-Point Tool might
propose data types that

are inconsistent with

the requirements of the
MATLAB Function blocks.
The proposed data types
might cause data type
mismatch errors or overflows.

Automatic Data Typing Using Simulation Data

Automatic Data Typing Using Simulation Data

In this section...

“Workflow for Automatic Data Typing Using Simulation Data” on page 9-11
“Set Up the Model” on page 9-12

“Prepare the Model for Conversion” on page 9-13

“Gather a Floating-Point Benchmark” on page 9-13

“Proposing Data Types” on page 9-15

“Propose Data Types” on page 9-16

“Examine Results to Resolve Conflicts” on page 9-17

“Apply Proposed Data Types” on page 9-21

“Verify New Settings” on page 9-22

“Automatic Data Typing of Simulink Signal Objects” on page 9-23

Workflow for Automatic Data Typing Using
Simulation Data

1 Set up the model

2 Prepare the model for conversion

Note If you do not have a floating-point model, skip this step.

3 Run the model to gather floating-point benchmark
4 Propose data types

5 Examine results to resolve conflicts

6 Apply proposed data types

7 Verify new settings

9-11

9 Automatic Data Typing

9-12

Set Up the Model

To use the Fixed-Point Tool to generate data type proposals for your model
based on simulation minimum and maximum values only, you must first set
up your model in Simulink.

1 Back up your model in case of error and as a baseline for testing and
validation.

2 Open your model in Simulink.

3 From the Simulink menu, select Simulation > Mode > Normal so that
the model runs in Normal mode. The Fixed-Point Tool supports only
Normal mode.

4 If you are using design minimum and maximum range information, add
this information to blocks.

You specify a design range for model objects using parameters typically
titled Output minimum and OQutput maximum. For a list of blocks
that permit you to specify these values, see “Blocks That Allow Signal
Range Specification”.

5 Specify fixed-point data types for blocks and signals in your model. For
blocks with the Data Type Assistant, use the Calculate Best-Precision
Scaling button to calculate best-precision scaling automatically. For
more information, see “Specifying Fixed-Point Data Types with the Data
Type Assistant” on page 1-23. If you have a floating-point model, use the
Fixed-Point Advisor to prepare your model for conversion to an equivalent
fixed-point representation For more information, see “Preparation for
Fixed-Point Conversion” on page 5-2.

6 You can choose to lock some blocks against automatic data typing by
selecting the Lock output data type setting against changes by the
fixed-point tools parameter. If you select the Lock output data type
setting against changes by the fixed-point tools parameter, the tool
does not propose data types for that object.

7 From the Simulink Simulation menu, select Update Diagram to perform
parameter range checking for all blocks in the model.

Automatic Data Typing Using Simulation Data

If update diagram fails, use the failure information to fix the errors in
your model. After fixing the errors, test update diagram again. If you are
unable to fix the errors, restore your back-up model.

8 If the model changed, back up the model again in case of error and as a
baseline for testing and validation.

9 Create a shortcut to capture the initial fixed-point instrumentation and
data type override settings. For more information, see “Capture Current
Model Settings Using the Shortcut Editor” on page 6-10.

Prepare the Model for Conversion

If you have a floating-point model or subsystem, first use the Fixed-Point
Advisor to prepare the model or subsystem for conversion to fixed point. The
Fixed-Point Advisor checks the model against fixed-point guidelines and
provides advice about unsupported blocks. You do this preparation once.

1 From the Simulink Analysis menu, select Fixed-Point Tool.

2 On the Fixed-Point Tool Model Hierarchy pane, select the system or
subsystem of interest.

3 On the Fixed-point preparation for selected system pane, click
Fixed-Point Advisor.

Use the Fixed-Point Advisor to prepare the model for conversion. For more
information, see “Preparation for Fixed-Point Conversion” on page 5-2.

Gather a Floating-Point Benchmark

First, run the model with a global override of the fixed-point data types using
double-precision numbers to avoid quantization effects. This action provides
a floating-point benchmark that represents the ideal output. The Simulink
software logs the signal logging results to the MATLAB workspace. The
Fixed-Point Tool displays the simulation results, including minimum and
maximum values, that occur during the run.

1 From the Simulink Analysis menu, select Fixed-Point Tool.

2 Enable signal logging for the system or subsystem of interest. Using
the Fixed-Point Tool you can enable signal logging for multiple signals

9-13

9 Automatic Data Typing

9-14

simultaneously. For more information, see “Signal Logging Options” in the
fxptdlg Reference.

To enable signal logging:

a On the Fixed-Point Tool Model Hierarchy pane, select the system or
subsystem.

b Right-click the selected system to open the context menu.
¢ Use the Enable Signal Logging option to enable signal logging, as

necessary.

The Contents pane of the Fixed-Point Tool displays an antenna icon I
next to items that have signal logging enabled.

Note You can plot results only for signals that have signal logging enabled.

On the Fixed-Point Tool Model Hierarchy pane, select the system or
subsystem for which you want a proposal.

On the Shortcuts to set up runs pane, click the Model-wide double
override and full instrumentation button to set:

e Data type override to Double
¢ Data type override applies to to A11 numeric types

¢ Fixed-point instrumentation mode to Minimums, maximums and
overflows

¢ The run name (in the Data collection pane Store results in run field)
to DoubleOverride

The Fixed-Point Tool performs a global override of the fixed-point data

types with double-precision data types, thus avoiding quantization effects.

During simulation, the tool logs minimum value, maximum value, and

overflow data for all blocks in the current system or subsystem in the run

DoubleOverride.

Automatic Data Typing Using Simulation Data

Note Data type override does not apply to boolean or enumerated data
types.

5 Click the Fixed-Point Tool Simulate button @ to run the simulation.

The Fixed-Point Tool highlights any simulation results that have issues,
such as overflows or saturations.

Proposing Data Types

Unless you select an object’s Lock output data type setting against
changes by the fixed-point tools parameter or the data types are using
inheritance rules, the Fixed-Point Tool proposes data types for model objects
that specify fixed-point data types.

When proposing data types, the Fixed-Point Tool collects the following types
of range data for model objects:

¢ Design minimum or maximum values — You specify a design range for
model objects using parameters typically titled Qutput minimum and
Output maximum. For a list of blocks that permit you to specify these
values, see “Blocks That Allow Signal Range Specification”.

® Simulation minimum or maximum values — When simulating a system
whose Fixed-point instrumentation mode parameter specifies
Minimums, maximums and overflows, the Fixed-Point Tool logs the
minimum and maximum values generated by model objects. For more
information about the Fixed-point instrumentation mode parameter,
see fxptdlg.

® Derived minimum or maximum values — When deriving minimum and
maximum values for a selected system, the Fixed-Point Tool uses the
design minimum and maximum values that you specify for the model to
derive range information for signals in your model. For more information,
see “Derive Ranges”.

The Fixed-Point Tool uses available range data to calculate data type
proposals according to the following rules:

9-15

9 Automatic Data Typing

9-16

® Design minimum and maximum values take precedence over the

simulation and derived range.

The Safety margin for design and derived min/max (%) parameter
specifies a range that differs from that defined by the design range. For
example, a value of 20 specifies that a range of at least 20 percent larger is
desired. A value of -10 specifies that a range of up to 10 percent smaller is
acceptable. If this parameter is not visible in the Automatic data typing
for selected system pane, click the Configure link.

® The tool observes the derived range only when the Derived min/max

option is selected. Otherwise, the tool ignores the derived range.

The Safety margin for design and derived min/max (%) parameter
specifies a range that differs from that defined by the derived range. For
example, a value of 20 specifies that a range of at least 20 percent larger is
desired. A value of -10 specifies that a range of up to 10 percent smaller is
acceptable. If this parameter is not visible in the Automatic data typing
for selected system pane, click the Configure link.

® The tool observes the simulation range only when the Simulation

min/max option is selected. Otherwise, the tool ignores the simulation
range.

The Safety margin for simulation min/max (%) parameter specifies

a range that differs from that defined by the simulation range. For
example, a value of 20 specifies that a range of at least 20 percent larger is
desired. A value of -10 specifies that a range of up to 10 percent smaller is
acceptable. If this parameter is not visible in the Automatic data typing
for selected system pane, click the Configure link.

Propose Data Types

1 In the Automatic data typing for selected system Settings pane,
select either Propose fraction lengths for specified word lengths or
Propose word lengths for specified fraction lengths.

If these options are not visible, use the Configure link to display them.
2 To use simulation min/max information only, clear Derived min/max.

3 If you have safety margins to apply:

Automatic Data Typing Using Simulation Data

a Enter Safety margin for design and derived min/max (%), if
applicable. For example, enter 10 for a 10% safety margin. If this
parameter is not visible in the Automatic data typing for selected
system pane, click the Configure link.

b Enter Safety margin for simulation min/max (%), if applicable.

4 Click the Propose fraction lengths or Propose word lengths button

to generate a proposal, L .

Note When the Fixed-Point Tool proposes data types, it does not alter
your model.

If there are conflicts in your model, the Fixed-Point Tool displays the
Result Details dialog box.

If you do not see this warning, there are no conflicts in your model. Go to
“Apply Proposed Data Types” on page 9-21.

Examine Results to Resolve Conflicts

You can examine each proposal using the Result Details dialog box, which
displays the rationale underlying the proposed data types. Also, this dialog
box describes potential issues or errors, and it suggests methods for resolving
them. To open the dialog box:

1 On the Contents pane, select an object that has proposed data types.
2 Click the Show details for selected result button @

The Result Details dialog box provides the following information about the
proposed data types, as appropriate.

Summary
Details which run the result is in and the current data type specified for
the selected object.

9-17

9 Automatic Data Typing

9-18

Proposed Data Type Summary

Describes a proposal in terms of how it differs from the object’s current data
type. For cases when the Fixed-Point Tool does not propose data types, this
section provides a rationale. For example, the data type might be locked
against changes by the fixed-point tools.

Needs Attention

Lists potential issues and errors associated with data type proposals. It
describes the issues and suggests methods for resolving them. The dialog box
uses the following icons to differentiate warnings from errors:

& Indicates a warning message.

@ Indicates an error message.

Shared Data Type Summary

This section of the dialog box informs you that the selected object must
share the same data type as other objects in the model because of data type
propagation rules. For example, the inputs to a Merge block must have the
same data type. Therefore, the outputs of blocks that connect to these inputs
must share the same data type.

The dialog box provides a hyperlink that you can click to highlight the objects
that share data types in the model. To clear this highlighting, from the model
View menu, select Remove Highlighting.

The Fixed-Point Tool allocates an identification tag to objects that must share
the same data type. The tool displays this identification tag in the DT Group
column for the object. To display only the objects that must share data types,
from the Fixed-Point Tool main toolbar, select the Show option.

Constrained Data Type Summary

Some Simulink blocks accept only certain data types on some ports. This
section of the dialog box informs you when a block that connects to the
selected object has data type constraints that impact the proposed data type
of the selected object. The dialog box lists the blocks that have data type

Automatic Data Typing Using Simulation Data

constraints, provides details of the constrained data types, and links to the

blocks in the model.

Data Type Details

Provides a table with model object attributes that influence its data type

proposal.
Item Description
Currently Data type that an object specifies.

Specified Data
Type

Proposed Data
Type

Data type that the Fixed-Point Tool proposes for this
object.

Proposed
Representable
Maximum

Maximum value that the proposed data type can
represent.

Design Maximum

Design maximum value that an object specifies
using, e.g., its OQutput maximum parameter.

Simulation Maximum value that occurs during simulation.
Maximum
Simulation Minimum value that occurs during simulation.
Minimum

Design Minimum

Design minimum value that an object specifies using,
e.g., its Output minimum parameter.

Proposed
Representable
Minimum

Minimum value that the proposed data type can
represent.

The dialog box table also includes a column titled Percent Proposed
Representable. This column indicates the percentage of the proposed
representable range that each value covers. Overflows occur when values

lie outside this range.

9-19

9 Automatic Data Typing

9-20

Shared Values. When proposing data types, the Fixed-Point Tool attempts
to satisfy data type requirements that model objects impose on one another.
For example, the Sum block provides an option that requires all of its inputs
to have the same data type. Consequently, the dialog box table might also
list attributes of other model objects that impact the proposal for the selected
object. In such cases, the table displays the following types of shared values:

e Initial Values

Some model objects provide parameters that allow you to specify the
initial values of their signals. For example, the Constant block includes
a Constant value parameter that initializes the block output signal.
The Fixed-Point Tool uses initial values to propose data types for model
objects whose design and simulation ranges are unavailable. When data
type dependencies exist, the tool considers how initial values impact the
proposals for neighboring objects.

Model-Required Parameters

Some model objects require the specification of numeric parameters to
compute the value of their outputs. For example, the Table data parameter
of an n-D Lookup Table block specifies values that the block requires to
perform a lookup operation and generate output. When proposing data
types, the Fixed-Point Tool considers how this “model-required” parameter
value impacts the proposals for neighboring objects.

To Examine the Results and Resolve Conflicts
1 On the Fixed-Point Tool toolbar, use the Show option to filter the results

to show Conflicts with proposed data types.

The Fixed-Point Tool lists its data type proposals on the Contents pane
under the ProposedDT column. The tool alerts you to potential issues for
each object in the list by displaying a green, yellow, or red icon.

£ The proposed data type poses no issues for this object.
[The proposed data type poses potential issues for this object.

[Z The proposed data type will introduce data type errors if applied
to this object.

Automatic Data Typing Using Simulation Data

2 Review and fix each [&} error.
a Select the error, right-click and select Highlight Block In Model from
the context menu to identify which block has a conflict.
b Click the Show details for selected result button @ to open the
Result Details dialog box.

¢ Use the information provided in the Needs Attention section of the
Result Details dialog box to resolve the conflict by fixing the problem in
the Simulink model.

3 Review the Result Details for the [warnings and correct the problem
if necessary.

4 You have changed the Simulink model, so the benchmark data is not up to
date. Click the Fixed-Point Tool Start button @ to rerun the simulation.
The Fixed-Point Tool warns you that you have not applied proposals. Click
the Ignore and Simulate button to continue.

5 Click the Propose fraction lengths or Propose word lengths button
to generate a proposal, ‘E/.

6 On the Fixed-Point Tool toolbar, use the Show option to filter the results
to show All results.

Apply Proposed Data Types

After reviewing the data type proposals, apply the proposed data types to
your model. The Fixed-Point Tool allows you to apply its data type proposals
selectively to objects in your model. On the Contents pane, use the Accept
check box to specify the proposals that you want to assign to model objects.
The check box indicates the status of a proposal:

9-21

9 Automatic Data Typing

9-22

[¥ The Fixed-Point Tool will apply the proposed data type to this object.

By default, the tool selects the Aceept check box when a proposal
differs from the object’s current data type.

[T The Fixed-Point Tool will ignore the proposed data type and leave the

current data type intact for this object.

[T No proposal exists for this object, for example, when the object

specifies a data type inheritance rule or is locked against automatic
data typing.

1 Examine each result. For more information about a particular result, select

the result and then click the Show details for selected result button 0
to display the Result Details dialog box.

If you do not want to accept the proposal for a result, on the Fixed-Point
Tool Contents pane, clear the Accept check box for that result.

Before applying proposals to your model, you can customize them with the
Fixed-Point Tool. On the Contents pane, click a ProposedDT cell and
edit the data type expression. For information about specifying fixed-point
data types, see fixdt.

Click the Apply accepted fraction lengths or Apply accepted word
lengths button |ﬁ/ to write the proposed data types to the model.

If you have not fixed all the warnings in the model, the Fixed-Point Tool
displays a warning dialog box.

Verify New Settings

After applying proposed data types to your model, you simulate the model
using the applied fixed-point data types.

1 On the Fixed-Point Tool Model Hierarchy pane, select the system or

subsystem for which you want a proposal.

2 On the Shortcuts to set up runs pane, click the Model-wide no

override and full instrumentation button to use the locally specified
data type settings.

Automatic Data Typing Using Simulation Data

This sets:
* Data type override to Use local settings.

¢ Fixed-point instrumentation mode to Minimums, maximums and
overflows.

¢ The run name (in the Data collection pane Store results in run field)
to NoOverride.

Using these settings, the Fixed-Point Tool simulates the model using the

new fixed-point settings and logs minimum value, maximum value, and

overflow data for all blocks in the current system or subsystem in the run

NoOverride.

3 Click the Fixed-Point Tool Start button @ to run the simulation.
4 Compare the ideal results stored in the DoubleOverride run with the
fixed-point results in the NoOverride run:

a On the Contents pane, select a result that has logged signal data. These
results are annotated with the [l icon.

b Click the Compare Signals 5 to view the difference between the
fixed-point and double override runs for the selected result.

If you have more than two runs, in the Compare Runs Selector dialog
box, select the two runs that you want to compare.

Automatic Data Typing of Simulink Signal Obijects

The Fixed-Point Tool can propose new data types for Simulink signal objects
in the base or model workspace. If you accept the proposed data types, the
Fixed-Point Tool automatically applies them to the Simulink signal objects.

Caution The Fixed-Point Tool does not save the changes to the signal object.

Before closing the model, you must save the changes.

After automatic data typing, if you delete or manipulate a signal object in the
base workspace, you must rerun the automatic data typing.

9-23

9 Automatic Data Typing

Avutomatic Data Typing Using Derived Minimum and
Maximum Values

In this section...

“Prerequisites for Automatic Data Typing Using Derived Minimum and
Maximum Values” on page 9-24

“Workflow for Automatic Data Typing Using Derived Data” on page 9-25
“Set Up the Model” on page 9-25

“Prepare Model Prior to Automatic Data Typing Using Derived Data” on
page 9-27

“Derive Minimum and Maximum Values” on page 9-27
“Resolve Range Analysis Issues” on page 9-29
“Proposing Data Types” on page 9-29

“Propose Data Types” on page 9-31

“Examine Results to Resolve Conflicts” on page 9-32
“Apply Proposed Data Types” on page 9-36

“Update Diagram” on page 9-37

Prerequisites for Automatic Data Typing Using
Derived Minimum and Maximum Values

The Fixed-Point Tool uses range analysis to derive minimum and maximum
values for objects in your model.

Range analysis:

e Requires a Simulink Fixed Point license.
® Does not run on Mac platforms.

®* Works only for compatible models that use real signals. For more
information, see “Model Compatibility with Range Analysis” on page 10-6.

9-24

Automatic Data Typing Using Derived Minimum and Maximum Values

Workflow for Automatic Data Typing Using Derived
Data

1 Verify that your model is compatible with range analysis. See “Model
Compatibility with Range Analysis” on page 10-6.

2 Set up model.

3 Prepare model prior to automatic data typing using derived data.

Note If you do not have a floating-point model, skip this step.

4 Derive minimum and maximum values.
5 Resolve any issues.
6 Derive minimum and maximum values.
7 Propose data types.
8 Examine results to resolve conflicts.
9 Apply proposed data types.

10 Update diagram.

Set Up the Model

To use the Fixed-Point Tool to generate data type proposals for your model
based on derived minimum and maximum values only, you must first set
up your model in Simulink.

1 Back up your model in case of error and as a baseline for testing and
validation.

2 Open your model in Simulink.

3 Select Simulation > Normal in the Simulink menu so that the model runs
in Normal mode. The Fixed-Point Tool supports only Normal mode.

9-25

9 Automatic Data Typing

9-26

4 To autoscale using derived data, you must specify design minimum and
maximum values on at least the model inputs. The range analysis tries to
narrow the derived range by using all the specified design ranges in the
model. The more design range information you specify, the more likely
the range analysis is to succeed. As the analysis is performed, it derives
new range information for the model and then attempts to use this new
information together with the specified ranges to derive ranges for the
remaining objects in the model. For this reason, the analysis results might
depend on block priorities because these priorities determine the order in
which the software analyzes the blocks.

You specify a design range for model objects using parameters typically
titled Output minimum and OQutput maximum. For a list of blocks
that permit you to specify these values, see “Blocks That Allow Signal
Range Specification”.

5 Specify fixed-point data types for blocks and signals in your model. For
blocks with the Data Type Assistant, use the Calculate Best-Precision
Scaling button to calculate best-precision scaling automatically. For more
information, see “Specifying Fixed-Point Data Types with the Data Type
Assistant” on page 1-23.

6 You can choose to lock some blocks against automatic data typing by
selecting the Lock output data type setting against changes by the
fixed-point tools parameter. If you select the Lock output data type
setting against changes by the fixed-point tools parameter, the tool
does not propose data types for that object.

7 From the Simulink Simulation menu, select Update Diagram to perform
parameter range checking for all blocks in the model.

If update diagram fails, use the failure information to fix the errors in
your model. After fixing the errors, test update diagram again. If you are
unable to fix the errors, restore your back-up model.

8 If the model changed, back up the model in case of error and as a baseline
for testing and validation.

9 Create a shortcut to capture the initial fixed-point instrumentation and
data type override settings. For more information, see “Capture Current
Model Settings Using the Shortcut Editor” on page 6-10.

Automatic Data Typing Using Derived Minimum and Maximum Values

Prepare Model Prior to Automatic Data Typing Using
Derived Data

If you have a floating-point model, use the Fixed-Point Advisor to prepare the
model for conversion to fixed point. The Fixed-Point Advisor:

® Checks the model against fixed-point guidelines.
e Jdentifies unsupported blocks.
¢ Removes output data type inheritance from blocks.

¢ Allows you to promote simulation minimum and maximum values to design
minimum and maximum values. This capability is useful if you have not
specified design ranges and you have simulated the model with inputs that
cover the full intended operating range. For more information, see “Specify
block minimum and maximum values” on page 12-33.

¢ Runs simulation range detection diagnostics. When preparing the model
for automatic data typing using derived data, you can complete the
preparation without setting up signal logging and creating a simulation
reference run. However, creating at least one simulation run is useful for
early error detection. Simulating the model helps to verify that the design
minimum and maximum values specified on the model are correct and that
the model conforms to modeling guidelines.

Derive Minimum and Maximum Values

1 On the Fixed-Point Tool Model Hierarchy pane, select the system or
subsystem of interest.

2 On the Settings for selected system pane, set Data type override to
Double.

3 Optionally, in the Data collection pane Store results in run field,
specify a run name. Specifying a unique run name avoids overwriting
results from previous runs.

4 In the Fixed-Point Tool, click Derive min/max values for selected
system.

The analysis runs and tries to derive range information for objects in the
selected system.

9 Automatic Data Typing

9-28

If the analysis successfully derives range data for the model, the
Fixed-Point Tool displays the derived minimum and maximum values for
the blocks in the selected system. (See “View Derived Range Information in
the Fixed-Point Tool” on page 10-12.) Before proposing data types, review
the results.

If the analysis fails, examine the error messages and resolve the issues.
See “Resolve Range Analysis Issues” on page 9-29.

Automatic Data Typing Using Derived Minimum and Maximum Values

Resolve Range Analysis Issues
The following table shows the different types of range analysis issues and the

steps to resolve them.

Analysis Results

Next Steps

For More Information

The analysis fails
because the model
contains blocks that
it does not support.
The Fixed-Point Tool
generates an error.

Review the error
message information
and replace the
unsupported blocks.

“Model Compatibility
with Range Analysis”
on page 10-6

The analysis cannot
derive range data
because the model
contains conflicting
design range
information. The
Fixed-Point Tool
generates an error.

Examine the design
ranges specified in
the model to identify
inconsistent design
specifications and
modify them to make
them consistent.

“Fixing Design Range
Conflicts” on page 10-25

The analysis cannot
derive range data for
an object because there
is insufficient design
range information
specified on the model.
The Fixed-Point Tool
highlights the results
for the object.

Examine the model to
determine which design
range information is
missing.

“Providing More Design
Range Information” on
page 10-23

Proposing Data Types

Unless you select an object’s Lock output data type setting against
changes by the fixed-point tools parameter or the data types are using
inheritance rules, the Fixed-Point Tool proposes data types for model objects
that specify fixed-point data types. You set up the tool to either propose
fraction lengths for specified word lengths or to propose word lengths for
specified fraction lengths. For more information, see “Propose Fraction
Lengths” on page 9-38 and “Propose Word Lengths” on page 9-54.

9-29

9 Automatic Data Typing

9-30

When generating data type proposals, the Fixed-Point Tool collects the
following types of range data for model objects:

Design minimum or maximum values — You specify a design range for
model objects using parameters typically titled OQOutput minimum and
Output maximum. For a list of blocks that permit you to specify these
values, see “Blocks That Allow Signal Range Specification”.

Simulation minimum or maximum values — When simulating a system
whose Fixed-point instrumentation mode parameter specifies
Minimums, maximums and overflows, the Fixed-Point Tool logs the
minimum and maximum values generated by model objects. For more
information about the Fixed-point instrumentation mode parameter,
see fxptdlg.

Derived minimum or maximum values — When deriving minimum and
maximum values for a selected system, the Fixed-Point Tool uses the
design minimum and maximum values that you specify for the model to
derive range information for signals in your model. For more information,
see “Derive Ranges”

For models that contain floating-point operations, range analysis might
report a range that is slightly larger than expected due to rounding errors
in the analysis. Automatic data typing bases its proposal on this slightly
larger derived range. To avoid this issue, use the safety margin for design
and derived min/max.

The Fixed-Point Tool uses available range data to calculate data type
proposals according to the following rules:

® Design minimum and maximum values take precedence over the

simulation and derived range.

The Safety margin for design and derived min/max (%) parameter
specifies a range that differs from that defined by the design range. For
example, a value of 20 specifies that a range of at least 20 percent larger is
desired. A value of -10 specifies that a range of up to 10 percent smaller is
acceptable. If this parameter is not visible in the Automatic data typing
for selected system pane, click the Configure link.

For more information, see “Safety margin for design and derived min/max
(%)” in the fxptdlg reference.

Automatic Data Typing Using Derived Minimum and Maximum Values

® The tool observes the derived range only when the Derived min/max
option is selected. Otherwise, the tool ignores the derived range.

The Safety margin for design and derived min/max (%) parameter
specifies a range that differs from that defined by the derived range.
For more information, see Percent safety margin for design and derived
min/max in the fxptdlg reference.

® The tool observes the simulation range only when the Simulation
min/max option is selected. Otherwise, the tool ignores the simulation
range.

The Safety margin for simulation min/max (%) parameter specifies a
range that differs from that defined by the simulation range. For more
information, see “Safety margin for simulation min/max (%)” in the
fxptdlg reference.

Propose Data Types

1 On the Automatic data typing for selected system Settings pane,
select either Propose fraction lengths for specified word lengths or
Propose word lengths for specified fraction lengths, as applicable.

If these options are not visible, use the Configure link to display them.

2 If you have a safety margin to apply, set Safety margin for design and
derived min/max (%). For example, enter 10 for a 10% safety margin.

3 Click the Propose fraction lengths or Propose word lengths button
to generate a proposal, \E/.

Note When the Fixed-Point Tool proposes data types, it does not alter
your model.

If there are conflicts in your model, the Fixed-Point Tool displays the
Result Details dialog box.

If you do not see this warning, there are no conflicts in your model, go to
“Apply Proposed Data Types” on page 9-21.

9-31

9 Automatic Data Typing

9-32

Examine Results to Resolve Conflicts

You can examine each data type proposal using the Result Details dialog
box, which displays the rationale underlying the proposal. Also, this dialog
box describes potential issues or errors, and provides methods for resolving
them. To open the dialog box:

1 On the Contents pane, select an object that has proposed data types.
2 Click the Show details for selected result button @

The Result Details dialog box provides the following information about the
proposed data type, as appropriate.

Summary

Details about which run the result is in and the current data type specified
for the selected object.

Proposed Data Type Summary

Describes a data type proposal in terms of how it differs from the object’s
current data type. For cases when the Fixed-Point Tool does not propose
data types, provides a rationale. For example, the data type might be locked
against changes by the fixed-point tool.

Needs Attention

Lists potential issues and errors associated with data type proposals.
Describes the issues and suggests methods for resolving them. The dialog box
uses the following icons to differentiate warnings from errors.

& Indicates a warning message.

@ Indicates an error message.

Shared Data Type Summary

This section of the dialog box informs you that the selected object must
share the same data type as other objects in the model because of data type
propagation rules. For example, the inputs to a Merge block must have the

Automatic Data Typing Using Derived Minimum and Maximum Values

same data type. Therefore, the outputs of blocks that connect to these inputs
must share the same data type.

The dialog box provides a hyperlink that you can click to highlight the objects
that share data types in the model. To clear this highlighting, from the model
View menu, select Remove Highlighting.

The Fixed-Point Tool allocates an identification tag to objects that must share
the same data type. The tool displays this identification tag in the DT Group
column for the object. To display only the objects that must share data types,
from the Fixed-Point Tool main toolbar, select the Show option.

Constrained Data Type Summary

Some Simulink blocks accept only certain data types on some ports. This
section of the dialog box informs you when a block that connects to the
selected object has data type constraints that impact the proposed data type
of the selected object. The dialog box lists the blocks that have data type
constraints, provides details of the constrained data types, and links to the
blocks in the model.

Data Type Details

Provides a table that lists a model object attributes that influence its data
type proposal.

Item Description

Currently Data type that an object specifies.

Specified Data

Type

Proposed Data Data type that the Fixed-Point Tool proposes for this

Type object.

Proposed Maximum value that the proposed data type can

Representable represent.

Maximum

Design Maximum | Design maximum value that an object specifies
using, e.g., its Output maximum parameter.

9-33

9 Automatic Data Typing

9-34

Item Description

Simulation Maximum value that occurs during simulation.
Maximum

Simulation Minimum value that occurs during simulation.
Minimum

Design Minimum | Design minimum value that an object specifies using,
e.g., its Output minimum parameter.

Proposed Minimum value that the proposed data type can
Representable represent.
Minimum

The dialog box table also includes a column titled Percent Proposed
Representable. This column indicates the percentage of the proposed
representable range that each value covers. Overflows occur when values
lie outside this range.

Shared Values. When proposing data types, the Fixed-Point Tool attempts
to satisfy data type requirements that model objects impose on one another.
For example, the Sum block provides an option that requires all of its inputs
to have the same data type. Consequently, the dialog box table might also
list attributes of other model objects that impact the data type proposal for
the selected object. In such cases, the table displays the following types

of shared values:

e Initial Values

Some model objects provide parameters that allow you to specify the
initial values of their signals. For example, the Constant block includes
a Constant value parameter that initializes the block output signal.
The Fixed-Point Tool uses initial values to propose data types for model
objects whose design and simulation ranges are unavailable. When data
type dependencies exist, the tool considers how initial values impact the
proposals for neighboring objects.

® Model-Required Parameters

Some model objects require the specification of numeric parameters to
compute the value of their outputs. For example, the Table data parameter
of an n-D Lookup Table block specifies values that the block requires to

Automatic Data Typing Using Derived Minimum and Maximum Values

perform a lookup operation and generate output. When proposing data
types, the Fixed-Point Tool considers how this “model-required” parameter
value impacts the proposals for neighboring objects.

To Examine the Results and Resolve Conflicts

1 On the Fixed-Point Tool toolbar, use the Show option to filter the results
to show Conflicts with proposed data types.

The Fixed-Point Tool lists its data type proposals on the Contents pane
under the ProposedDT column. The tool alerts you to potential issues for
each object in the list by displaying a green, yellow, or red icon.

£ The proposed data type poses no issues for this object.
[The proposed data type poses potential issues for this object.

& The proposed data type will introduce data type errors if applied
to this object.

2 Review and fix each & error.

a Select the error, right-click, and from the context menu, select Highlight
Block In Model to identify which block has a conflict.

b Click the Show details for selected result button @ to open the
Result Details dialog box.

¢ Use the information provided in the Needs Attention section of the
Result Details dialog box to resolve the conflict by fixing the problem in
the Simulink model.

3 Review the Result Details for the [warnings and correct the problem
if necessary.

4 You have changed the Simulink model, so the benchmark data is not up to
date. Click the Fixed-Point Tool Start button @ to rerun the simulation.

The Fixed-Point Tool warns you that you have not applied proposals. Click
the Ignore and Simulate button to continue.

9-35

9 Automatic Data Typing

5 Click the Propose fraction lengths or Propose word lengths button to
generate a data type proposal, ‘E/.

6 On the Fixed-Point Tool toolbar, use the Show option to filter the results
to show All results.

Apply Proposed Data Types

After reviewing the data type proposals, apply the proposed data types to
your model. The Fixed-Point Tool allows you to apply its data type proposals
selectively to objects in your model. On the Contents pane, use the Accept
check box to specify the proposals that you want to assign to model objects.
The check box indicates the status of a proposal:

[¥ The Fixed-Point Tool will apply the proposed data type to this object.
By default, the tool selects the Accept check box when a proposal
differs from the object’s current data type.

[T The Fixed-Point Tool will ignore the proposed data type and leave the
current data type intact for this object.

[T No proposal exists for this object, for example, when the object

specifies a data type inheritance rule or is locked against automatic
data typing.

1 Examine each result. For more information about a particular result, select

the result and then click the Show details for selected result button @
to open the Result Details dialog box.

2 If you do not want to accept the proposal for a result, on the Fixed-Point
Tool Contents pane, clear the Accept check box for that result.

Before applying proposals to your model, the Fixed-Point Tool enables you
to customize them. On the Contents pane, click a ProposedDT cell and
edit the data type expression. For information about specifying fixed-point
data types, see fixdt.

3 Click the Apply accepted fraction lengths or Apply accepted word
lengths button ™ to write the proposed data types to the model.

9-36

Automatic Data Typing Using Derived Minimum and Maximum Values

If you have not fixed all the warnings in the model, the Fixed-Point Tool
displays a warning dialog box.

Update Diagram

From the model’s Simulation menu, select Update Diagram.

After applying the data types to the model, update diagram to check for
data type propagation issues.

If update diagram fails, use the failure information to fix the errors in your

model. After fixing the errors, test update diagram again. If you are unable
to fix the errors, restore your backed up model.

9-37

9 Automatic Data Typing

Propose Fraction Lengths

9-38

In this section...

“Propose Fraction Lengths” on page 9-38
“About the Feedback Controller Example Model” on page 9-39
“Propose Fraction Lengths Using Simulation Range Data” on page 9-45

Propose Fraction Lengths

1 On the Fixed-Point Tool Automatic data typing for selected system
pane, select Propose fraction lengths for specified word lengths. If
you cannot see this option, click Configure to display more options.

2 On the same pane:
¢ For simulation min/max information only, clear Derived min/max.
¢ For derived min/max information only, clear Simulation min/max.
3 If you have safety margins to apply, set Safety margin for design and

derived min/max (%) and Safety margin for design and derived
min/max (%), as applicable.

4 Click the Propose fraction lengths button, IEI.

Note When the Fixed-Point Tool proposes data types, it does not alter
your model.

If there are conflicts in your model, the Fixed-Point Tool opens the Result
Details dialog box.

If you do not see this warning, there are no conflicts in your model. Review
the proposed word lengths,

Propose Fraction Lengths

About the Feedback Controller Example Model

® “Opening the Feedback Controller Model” on page 9-39
® “Simulation Setup” on page 9-40

¢ “Idealized Feedback Design” on page 9-41

¢ “Digital Controller Realization” on page 9-42

Opening the Feedback Controller Model
To open the Simulink feedback design model for this tutorial, at the MATLAB
command line, type fxpdemo_feedback.

bﬁ frpdemo_feedback EI@
File Edit View Display Diagram Simulation Analysis Code Tools Help

E-8 e G -BE 4OP @ ema femd) @ g
fxpdema_feedback

® ||"a|fepdemo_feedback #

& Scaling a Fixed-Point Control Design
Ed
:g H nums) 7
= et ——HIn1 Outt -@—» g ;mmw N l:||
Reference ZOH 750 Don Scape
Anslog to Digital Digital o Anslog Ansiog Plant
| nterface Controller Intertace
Digital Controller
Plantutput Software on
Fixed Point
Processor
Copyright 1850-2012 The MathiWorks, Inc.

b

Ready 100% oded

The Simulink model of the feedback design consists of the following blocks
and subsystems:

e Reference

This Signal Generator block generates a continuous-time reference signal.
It is configured to output a square wave.

* Sum

9-39

9 Automatic Data Typing

9-40

This Sum block subtracts the plant output from the reference signal.
e ZOH

The Zero-Order Hold block samples and holds the continuous signal. This
block is configured so that it quantizes the signal in time by 0.01 seconds.

* Analog to Digital Interface

The analog to digital (A/D) interface consists of a Data Type Conversion
block that converts a double to a fixed-point data type. It represents any
hardware that digitizes the amplitude of the analog input signal. In the
real world, its characteristics are fixed.

e Controller

The digital controller is a subsystem that represents the software running
on the hardware target. Refer to “Digital Controller Realization” on page
9-42.

¢ Digital to Analog Interface

The digital to analog (D/A) interface consists of a Data Type Conversion
block that converts a fixed-point data type into a double. It represents any
hardware that converts a digitized signal into an analog signal. In the real
world, its characteristics are fixed.

* Analog Plant

The analog plant is described by a transfer function, and is controlled by
the digital controller. In the real world, its characteristics are fixed.

* Scope

The model includes a Scope block that displays the plant output signal.

Simulation Setup
To set up this kind of fixed-point feedback controller simulation:

1 Identify all design components.

In the real world, there are design components with fixed characteristics
(the hardware) and design components with characteristics that you
can change (the software). In this feedback design, the main hardware

Propose Fraction Lengths

components are the A/D hardware, the D/A hardware, and the analog
plant. The main software component is the digital controller.

2 Develop a theoretical model of the plant and controller.

For the feedback design in this tutorial, the plant is characterized by
a transfer function.

The digital controller model in this tutorial is described by a z-domain
transfer function and is implemented using a direct-form realization.

3 Evaluate the behavior of the plant and controller.

You evaluate the behavior of the plant and the controller with a Bode plot.
This evaluation is idealized, because all numbers, operations, and states
are double-precision.

4 Simulate the system.

You simulate the feedback controller design using Simulink and Simulink
Fixed Point software. In a simulation environment, you can treat all
components (software and hardware) as though their characteristics are
not fixed.

Idealized Feedback Design

Open loop (controller and plant) and plant-only Bode plots for the “Scaling

a Fixed-Point Control Design” model are shown in the following figure. The
open loop Bode plot results from a digital controller described in the idealized
world of continuous time, double-precision coefficients, storage of states, and
math operations.

9-41

9 Automatic Data Typing

Bode Plots: Plant Only (dashed) and Open Loop (solid)

=
o

Magnitude

10° 10" 10 10
Freq (rad/sec)

-100

-200

Phase

-300

-400
10

9-42

10° 10" 10 10
Freq (rad/sec)

The Bode plots were created using workspace variables produced by a script
named preload_ feedback.m.

Digital Controller Realization

In this simulation, the digital controller is implemented using the fixed-point
direct form realization shown in the following diagram. The hardware target
1s a 16-bit processor. Variables and coefficients are generally represented
using 16 bits, especially if these quantities are stored in ROM or global RAM.
Use of 32-bit numbers is limited to temporary variables that exist briefly in
CPU registers or in a stack.

Propose Fraction Lengths

'bi frxpderno_feedback/Controller EI@
File Edit View Display Diagram Simulation Analysis Code Tools Help
=]] @ = (ol (ihd
-5 & < L | 5 =R YN &) v (Y7 v
Contraller
® |Pa|fxpdemo_feedback » [Pa| Controller hd
= [, f #| Convert 1 > umiz) =+
1
In1
Up Cast Mumer ator Terms Duﬂ(1 }
Convert from Multiply and Accumulate
AZD Type Meost Recent Inpus and 5 o
> BaseType Mumerstor Coefficients | Convert
in Accumulator Plantinput
Down Cast
Reduce Output from
1 = numiz) Accumulator Size to
S i o - Bsse Memory Sze
z 1
Prev Cut Dencminator Terms
Store Most Multiply and Accumulate
Recent Cutput IMost Recent Outputs snd
in Memeary for Denominator Coefficients -
One Sample Time in Accumulstor Combine Terms
Combine Numerator
and Dencminator
Confributions to TF
inAccumulator
»
Ready 100% oded

The realization consists of these blocks:

e Up Cast

Up Cast is a Data Type Conversion block that connects the A/D hardware
with the digital controller. It pads the output word size of the A/D hardware
with trailing zeros to a 16-bit number (the base data type).

¢ Numerator Terms and Denominator Terms

Each of these Discrete FIR Filter blocks represents a weighted sum carried
out in the CPU target. The word size and precision in the calculations
reflect those of the accumulator. Numerator Terms multiplies and

9-43

9 Automatic Data Typing

9-44

accumulates the most recent inputs with the FIR numerator coefficients.
Denominator Terms multiples and accumulates the most recent delayed
outputs with the FIR denominator coefficients. The coefficients are stored
in ROM using the base data type. The most recent inputs are stored in
global RAM using the base data type.

Combine Terms

Combine Terms is a Sum block that represents the accumulator in the
CPU. Its word size and precision are twice that of the RAM (double bits).

Down Cast

Down Cast is a Data Type Conversion block that represents taking the
number from the CPU and storing it in RAM. The word size and precision
are reduced to half that of the accumulator when converted back to the
base data type.

Prev Out

Prev Out is a Unit Delay block that delays the feedback signal in memory
by one sample period. The signals are stored in global RAM using the
base data type.

Direct Form Realization. The controller directly implements this equation:

N N
y(k)= Zbiu(k—l)—Zaiy(k—l),
-0 i1

u(k — 1) represents the input from the previous time step.

y(k) represents the current output, and y(k — 1) represents the output from
the previous time step.

b, represents the FIR numerator coefficients.

a; represents the FIR denominator coefficients.

The first summation in y(k) represents multiplication and accumulation of the
most recent inputs and numerator coefficients in the accumulator. The second
summation in y(k) represents multiplication and accumulation of the most
recent outputs and denominator coefficients in the accumulator. Because the
FIR coefficients, inputs, and outputs are all represented by 16-bit numbers

Propose Fraction Lengths

(the base data type), any multiplication involving these numbers produces a
32-bit output (the accumulator data type).

Propose Fraction Lengths Using Simulation Range
Data

e “Initial Guess at Scaling” on page 9-45
® “Data Type Override” on page 9-48
* “Automatic Data Typing” on page 9-49

This example shows you how to use the Fixed-Point Tool to refine the scaling
of fixed-point data types associated with a feedback controller model (see
“About the Feedback Controller Example Model” on page 9-39). Although the
tool enables multiple workflows for converting a digital controller described in
1deal double-precision numbers to one realized in fixed-point numbers, this
example uses the following approach:

e “Initial Guess at Scaling” on page 9-45. Run an initial “proof of concept”
simulation using a reasonable guess at the fixed-point word size and
scaling. This task illustrates how difficult it is to guess the best scaling.

® “Data Type Override” on page 9-48. Perform a global override of the
fixed-point data types using double-precision numbers. The Simulink
software logs the simulation results to the MATLAB workspace, and the
Fixed-Point Tool displays them.

e “Automatic Data Typing” on page 9-49. Perform the automatic data typing
procedure, which uses the double-precision simulation results to propose
fixed-point scaling for appropriately configured blocks. The Fixed-Point
Tool allows you to accept and apply the scaling proposals selectively.
Afterward, you determine the quality of the results by examining the input
and output of the model’s analog plant.

Initial Guess at Scaling

Initial guesses for the scaling of each block are already specified in each block
mask in the model. This task illustrates the difficulty of guessing the best
scaling.

9-45

9 Automatic Data Typing

9-46

1 Open both the fxpdemo_feedback model and the Fixed-Point Tool.

2 On the Fixed-Point Tool Shortcuts to set up runs pane, click the

Model-wide no override and full instrumentation button to set:

* Data type override to Use local settings. This option enables each
of the model’s subsystems to use its locally specified data type settings.

* Fixed-point instrumentation mode to Minimums, maximums and
overflows.

® The run name to NoOverride.

3 In the Fixed-Point Tool, click the Simulate button @

The Simulink software simulates the fxpdemo_feedback model. Afterward,
on its Contents pane, the Fixed-Point Tool displays the simulation results
for each block that logged fixed-point data. By default, it displays the
Simulation View of these results. You can customize this view by clicking
Show Details. For more information about the standard views provided
by the Fixed-Point Tool, see “Customizing the Contents Pane View” in

the fxptdlg function reference. For more information about customizing
views, see “Control Model Explorer Contents Using Views”.

The tool stores the results in the NoOverride run, denoted by the
NoOverride label in the Run column. The Fixed-Point tool highlights
the Up Cast block to indicate that there is an issue with this result. The
Saturations column for this result shows that the block saturated 23
times, which indicates a poor guess for its scaling.

Tip In the main toolbar, use the Show option to view only blocks that
have Overflows.

4 On the Contents pane of the Fixed-Point Tool, select the Transfer Fcn

block named Analog Plant and then click the Inspect Signal button E

The Fixed-Point Tool plots the signal associated with the plant output.

Propose Fraction Lengths

@ Simulation Data Inspector®
File Plot Help

NE W 8 FREARENE| o

| Inspect Signals | Compare Stgnanl Compare Runs|

Block Name
= NoOverride
[AzD
Analog Plant
] Combine Terms
|| Down Cast
[T1n
[Prev Out
[] Up Cast
[Reference

Signal Na...

TrackingError
PlantOutput

Plantinput

DesiredQut..,

Line

< | [

Change Grouping

[o&@][=]
[
3 35 4

The preceding plot of the plant output signal reflects the initial guess at
scaling. The Bode plot design sought to produce a well-behaved linear
response for the closed-loop system. Clearly, the response is nonlinear.
Significant quantization effects cause the nonlinear features. An important
part of fixed-point design is finding a scaling that reduces quantization effects
to acceptable levels.

Tip Use the Fixed-Point Tool plotting tools to plot simulation results
associated with logged signal data. To view a list of all logged signals, in the
main toolbar, use the Show option and select Signal logging results.

9-47

9 Automatic Data Typing

9-48

Data Type Override

Data type override mode enables you to perform a global override of the
fixed-point data types with double-precision data types, thereby avoiding
quantization effects. When performing automatic scaling to propose higher
fidelity fixed-point scaling, the Fixed-Point Tool uses these simulation results.

1 On the Fixed-Point Tool Shortcuts to set up runs pane, click the
Model-wide double override and full instrumentation button to set:

¢ Data type override to Double
¢ Data type override applies to to ALl numeric types

¢ Fixed-point instrumentation mode to Minimums, maximums and
overflows

¢ The run name (on the Data collection pane Store results in run
field) to DoubleOverride

2 In the Fixed-Point Tool, click the Simulate button @

The Simulink software simulates the fxpdemo_feedback model in data
type override mode and stores the results as the DoubleOverride run.
Afterward, on its Contents pane, the Fixed-Point Tool displays the
DoubleOverride run results along with those of the NoOverride run that
you generated previously (see “Initial Guess at Scaling” on page 9-45). The
compiled data type (CompiledDT) column for the DoubleOverride run
shows that the model’s blocks used a double data type during simulation.

3 On the Contents pane of the Fixed-Point Tool, select the Transfer Fcn
block named Analog Plant in the NoOverride run, and then click the

Compare Signals button ')

The Fixed-Point Tool plots both the DoubleOverride and NoOverride
versions of the signal associated with the plant output (upper axes), and
plots the difference between the active and reference versions of that signal
(lower axes). Compare the ideal (double data type) plant output signal
with its fixed-point version.

Propose Fraction Lengths

Tip From the Simulation Data Inspector menu bar, use the zoom tools to
zoom in on an area.

@ Simulation Data Inspector™ EI@

File Plot Help
Dol & &R Edal0E| e

‘ Inspect Signa|s| Compare Signals ‘ Compare Runs|

Signals
Sigl Sig2 Block Name Signal Name Line 3t
= NeOverride 9
= A2D TrackingError ™=
@ Analog Plant PlantOutput T
Combine Ter... 0F
Down Cast Plantlnput - At
Inl
n ol
Prev Out
3t
Up Cast —
Reference DesiredOutput === 4k L L L L
0 1 2 3 4
= DoubleOverride
AZD TrackingError
Difference
@ Analog Plant PlantOutput 5k
Combine Ter... Difference
------- Tolerance

Down Cast Plantlnput

Inl

Prev Out

Up Cast

Reference DesiredQutput

4 T b

Automatic Data Typing

Using the automatic data typing procedure, you can easily maximize the
precision of the output data type while spanning the full simulation range.

Because no design min/max information is supplied, the simulation min/max
data that was collected during the simulation run is used for proposing

9-49

9 Automatic Data Typing

9-50

data types. The Safety margin for simulation min/max (%) parameter
value multiplies the “raw” simulation values by a factor of 1.2. Setting this
parameter to a value greater than 1 decreases the likelihood that an overflow
will occur when fixed-point data types are being used. For more information
about how the Fixed-Point Tool calculates data type proposals, see “Proposing
Data Types” on page 9-15.

Because of the nonlinear effects of quantization, a fixed-point simulation
produces results that are different from an idealized, doubles-based
simulation. Signals in a fixed-point simulation can cover a larger or smaller
range than in a doubles-based simulation. If the range increases enough,
overflows or saturations could occur. A safety margin decreases this
likelihood, but it might also decrease the precision of the simulation.

Note When the maximum and minimum simulation values cover the
full, intended operating range of your design, the Fixed-Point Tool yields
meaningful automatic data typing results.

Perform automatic data typing for the Controller block. This block is a
subsystem that represents software running on the target, and it requires
optimization.

1 On the Model Hierarchy pane of the Fixed-Point Tool, select the
Controller subsystem. On the Automatic data typing for selected
system pane, click the Configure link. Select Simulation min/max for
Propose using information from design min/max and, then specify
the Safety margin for simulation min/max parameter as 20. Click

Apply.
2 In the Fixed-Point Tool:

a Click the Propose fraction lengths button ‘E/.

b In the Propose Data Types dialog box, select DoubleOverride, and
then click OK.

The Fixed-Point Tool analyzes the scaling of all fixed-point blocks whose:

Propose Fraction Lengths

* Lock output data type setting against changes by the
fixed-point tools parameter is not selected.

® OQutput data type parameter specifies a generalized fixed-point
number.

® Data types are not inherited types.

The Fixed-Point Tool uses the minimum and maximum values stored in
the DoubleOverride run to propose each block’s data types such that
the precision is maximized while the full range of simulation values is
spanned. The tool displays the proposed data types on its Contents
pane. Now, it displays the Automatic Data Typing with Simulation
Min/Max View to provide information, such as ProposedDT,
ProposedMin, ProposedMax, which are relevant at this stage of the
fixed-point conversion.

Tip In the main toolbar, use the Show option to view the groups that
must share data types. For more information, see fxptdlg in the
Simulink Reference.

3 Review the scaling that the Fixed-Point Tool proposes. You can choose to
accept the scaling proposal for each block. On the Contents pane, select the
corresponding Accept check box. By default, the Fixed-Point Tool accepts
all scaling proposals that differ from the current scaling. For this example,
ensure that the Accept check box associated with the DoubleOverride run
is selected for each of the Controller subsystem’s blocks.

4 In the Fixed-Point Tool, click the Apply accepted fraction lengths
button lil

The Fixed-Point Tool applies the scaling proposals that you accepted in the
previous step to the Controller subsystem’s blocks.

5 On the Model Hierarchy pane of the Fixed-Point Tool, select the
fxpdemo_feedback system.

9-51

9 Automatic Data Typing

9-52

a On the Shortcuts to set up runs pane, click the Model-wide no

override and full instrumentation button to use the locally specified
data type settings.

On the Data collection pane, set Store results in run to FixedPoint
so that the Fixed-Point Tool stores the results with a new run name and
does not overwrite the results for the initial fixed-point set up. Storing
the results in different runs allows you to compare the initial system
behavior with the behavior of the autoscaled model.

6 In the Fixed-Point Tool, click Simulate.

The Simulink software simulates the fxpdemo_feedback model using

the new scaling that you applied. Afterward, in its Contents pane, the
Fixed-Point Tool displays information about blocks that logged fixed-point
data. The compiled data type (CompiledDT) column for the FixedPoint
run shows that the Controller subsystem’s blocks used fixed-point data
types with the new scaling.

7 On the Model Hierarchy pane of the Fixed-Point Tool, select the
fxpdemo_feedback system.

a On the Contents pane, select the Transfer Fen block named Analog

Plant for the FixedPoint run, and then click the Compare Signals

button ;Zl

b In the Compare Runs Selector dialog box, select DoubleOverride,

and then click OK.

The Fixed-Point Tool plots the fixed-point and double override versions
of the plant output signal, as well as their difference.

Propose Fraction Lengths

[Simulation Data Inspector*
File Plot Help

D d 8 FREARGE| e

| InspectS\gna\s| Comparesignals| CompareRuns|

Sigl Sig2 Block Mame
= NoQverride
AZD
Analog Plant

Combine Ter...
Down Cast
Inl
Prev Qut
Up Cast
P Reference
= DoubleQverride
A2D
@ Analog Plant
Combine Ter...
Down Cast
Inl
Prev Out
Up Cast
P Reference
[= FixedPoint
AZ2D

@ Analog Plant

Signal Mame

TrackingError
PlantOutput

PlantInput

DesiredOutput

TrackingError
PlantOutput

PlantInput

DesiredOutput

TrackingError
PlantOutput

Line

m

« | .

L3

= Bl
Signals B
3k
2r
1k
0k
1k
2F
3h . . .
0 2 3 4
Difference [
0.04
— Difference
0.035 -9--=-1 Tolgranc
0.03
0.025
0.02
0015
001
0.005
0

Tip Optionally, you can zoom in to view the steady-state region with
greater detail. From the Tools menu of the figure window, select Zoom
In and then drag the pointer to draw a box around the area that you want

to view more closely.

The plant output signal represented by the fixed-point run achieves a
steady state, but a small limit cycle is present because of poor A/D design.

9-53

9 Automatic Data Typing

Propose Word Lengths

9-54

In this section...

“How the Fixed-Point Tool Proposes Word Lengths” on page 9-54
“Propose Word Lengths” on page 9-56

“Propose Word Lengths Based on Simulation Data” on page 9-57

How the Fixed-Point Tool Proposes Word Lengths

To use the Fixed-Point Tool to propose word lengths, you must specify the
target hardware and the fraction length requirements for data types in the
model. Select the fraction lengths based on the precision required for the
system that you are modeling. If you do not specify fraction lengths, the
Fixed-Point Tool sets the fraction length to zero. The Fixed-Point Tool uses
these specified fraction lengths to recommend the minimum word length for
fixed-point data types in the selected model or subsystem to avoid overflow
for the collected range information.

The proposed word length is based on:

® Design range information and range information that the Fixed-Point Tool
or Fixed-Point Advisor collects. This collected range information can be
either simulation or derived range data.

® The signedness and fraction lengths of data types that you specify for
blocks, signal objects.

® The signedness and fraction lengths of the default data types that you
specify in the Fixed-Point Tool or Fixed-Point Advisor.

® The embedded hardware implementation settings specified in the
Configuration Parameters dialog box.

How the Fixed-Point Tool Uses Range Information

The Fixed-Point Tool determines whether to use different types of range
information based on its availability and on the Fixed-Point Tool Derived
min/max and Simulation min/max settings.

Propose Word Lengths

Design range information always takes precedence over both simulation
and derived range data. When there is no design range information, the
Fixed-Point Tool uses the union of available simulation and derived range
data. If you specify safety margins, the Fixed-Point Tool takes these margins
into account.

For example, if a signal has a design range of [-10,10], the Fixed-Point
Tool uses this range for the proposal and ignores all simulation and derived
range information. If you specify a safety margin of 10% for design range, the
Fixed-Point Tool uses a range of [-11,11] for the proposal.

If the signal has no specified design information, but does have a simulation
range of [-8,8] and a derived range of [-2,2], the proposal uses the union
of the ranges, [-8,8]. If you specify a safety margin of 50%, the proposal
uses a range of [-12, 12].

How the Fixed-Point Tool Uses Target Hardware Information

The Fixed-Point Tool calculates the ideal word length and then checks this
length against the embedded hardware implementation settings for the target
hardware. The tool uses the following rules.

Target Ideal Word Proposed Word | Restrictions

Hardware | Length Length

FPGA/ASIC | Ideal word Ideal word length | None
length=<128
Ideal word 128 Maximum word
length>128 length is 128

9-55

9 Automatic Data Typing

Target Ideal Word Proposed Word | Restrictions
Hardware | Length Length
Embedded Ideal word char Rounds up word
Processor length=< character length
bit length for
the embedded
processor (char)
char <Ideal word short Rounds up word
length=< short length
bit length for
the embedded
processor (short)
short<Ideal word int Rounds up word
length=< integer length
bit length for
the embedded
processor (int)
int<Ideal word long Rounds up word
length=<long length
bit length for
the embedded
processor (long)
Ideal word long Maximum word
length>long length is the target

bit length for
the embedded
processor

hardware long

Propose Word Lengths

1 Specify the target hardware.

a Inthe model, select Simulation > Model Configuration Parameters.

b In the Configuration Parameters dialog box, select Hardware
Implementation.

9-56

Propose Word Lengths

¢ On the Hardware Implementation pane, specify the Device vendor
and Device type, and then click Apply.

2 On the Fixed-Point Tool Automatic data typing for selected system
pane, select Propose word lengths for specified fraction lengths. If
you cannot see this option, click Configure to display more options.

3 On the same pane:
¢ For simulation min/max information only, clear Derived min/max.

¢ For derived min/max information only, clear Simulation min/max.

4 If you have safety margins to apply, set Safety margin for design and
derived min/max (%) and Safety margin for design and derived
min/max (%), as applicable.

5 Click the Propose word lengths button, \E/.

Note When the Fixed-Point Tool proposes data types, it does not alter
your model.

If there are conflicts in your model, the Fixed-Point Tool opens the Result
Details dialog box.

If you do not see this warning, there are no conflicts in your model. Review
the proposed word lengths,

Propose Word Lengths Based on Simulation Data

This example shows how to use the Fixed-Point Tool to propose word lengths
for a model that implements a simple moving average algorithm. The model
already uses fixed-point data types, but they are not optimal. Simulate the
model and propose data types based on simulation data. To see how the target
hardware affects the word length proposals, first set the target hardware

to an embedded processor and propose word lengths. Then, set the target
hardware to an FPGA and propose word lengths.

1 Open the ex_moving_average model. At the MATLAB command line,
enter:

9-57

9 Automatic Data Typing

addpath(fullfile(docroot, 'toolbox','fixpoint', 'examples'))

ex_moving_average

9-58

P4 ex_moving_average

File Edit View Display Diagram Simulation Analysis Code Tools Help

m-E S EH-EAOP @ w .
ex_moving_average
@ |Palex moving_average -
@
a of coner } N
== | SineWawe Db-o-Fect 4:|*_l | Fterow
Aadl Gaind

UnitDeizyt|

M o 2 E

1 €)

Gan1

Llnit[blayz[-—:l
S
GanZ
UnitDetme| - |

W

l/

Gainl
» 3
Ready 89%

Some blocks in the model already have specified fixed-point data types.

Block Data Type Specified on Block
Dbl2Fixpt fixdt(1,16,10)

Gaini fixdt(1,32,17)

Gain2 fixdt(1,32,17)

Gain3 fixdt(1,32,17)

Gain4 fixdt(1,16,1)

Add1 fixdt(1,32,17)

Propose Word Lengths

Block Data Type Specified on Block
Add2 fixdt(1,32,17)
Add3 fixdt(1,32,17)

2 Verify that the target hardware is an embedded processor.
a Inthe model, select Simulation > Model Configuration Parameters.

b In the Configuration Parameters dialog box, select Hardware
Implementation.

On the Hardware Implementation pane, the Device vendor is
Generic and the Device type is 16 bit embedded processor.

¢ Close the Configuration Parameters dialog box.
3 From the model Analysis menu, select Fixed-Point Tool.

4 On the Shortcuts to set up runs pane, click the Model-wide double
override and full instrumentation button to set:

¢ Data type override to Double
¢ Data type override applies to to ALl numeric types

¢ Fixed-point instrumentation mode to Minimums, maximums and
overflows

¢ The run name (in the Data collection pane Store results in run field)
to DoubleOverride

Using these settings, the Fixed-Point Tool performs a global override of
the fixed-point data types with double-precision data types, avoiding
quantization effects. During simulation, the tool logs minimum value,
maximum value, and overflow data for all blocks in the current system or
subsystem in the run DoubleOverride.

5 Click the Fixed-Point Tool Simulate button @ to run the simulation.

The Fixed-Point Tool simulates the model and displays the results on the
Contents pane in the run named DoubleOverride.

9-59

9 Automatic Data Typing

9-60

Contents of: ex_moving_average™ (mmo-dbl)

Column View: | Simulation View ~ | Show Details

Name Run CompiledDT SpecifiedDT SimMin SimMax DesignMin DesignMax OverflowWraps Saturations
1 Add1 : Accumulator DoubleOverride
11 add1 : Output DoubleOverride
] Add2: Accumulator DoubleQverride
1 add2: Output DoubleQverride
=] Add3: Accumuiator DoubleOverride
=1 Add3 : Output DoubleOverride
1=l Data Type Conversionl DoubleOverride
[Gaint DoubleOverride
1 Gainz DoubleOverride
=1 Gain3 DoubleOverride
181 Gaind DoubleOverride
I3 outt DoubleOverride

6 On the Automatic data typing for selected system pane:
a Click Configure to display more options.

b Select Propose word lengths for specified fraction lengths, then
click Apply.

7 Click the Propose word lengths button.

The Fixed-Point Tool uses available range data to calculate data type
proposals according to the following rules:

¢ Design minimum and maximum values take precedence over the
simulation range.

The Safety margin for design and derived min/max (%) parameter
specifies a range that differs from that defined by the design range. In
this example, no safety margins are set.

¢ The tool observes the simulation range because you selected the
Simulation min/max option.

The Safety margin for simulation min/max (%) parameter specifies
a range that differs from that defined by the simulation range. In this
example, no safety margins are set.

The Fixed-Point Tool analyzes the data types of all fixed-point blocks whose:

* Lock output data type setting against changes by the fixed-point
tools parameter is not selected.

® OQutput data type parameter specifies a generalized fixed-point
number.

Propose Word Lengths

® Data types are not inherited types.

For each object in the model, the Fixed-Point Tool proposes the minimum
word length that avoids overflow for the collected range information.
Because the target hardware is a 16-bit embedded processor, the
Fixed-Point tool proposes word lengths based on the number of bits used
by the processor for each data type. For more information, see “How the
Fixed-Point Tool Uses Target Hardware Information” on page 9-55.

The tool proposes smaller word lengths for Gain4 and Gain4:Gain. The
tool calculated that their ideal word length is less than or equal to the
character bit length for the embedded processor (8), so the tool rounds up
the word length to 8.

| Contents of: ex_moving_average™ (mmo-dbl)

Column View: |Automatic Data Typing View v] Show Details
Mame . Run CompiledDT Accept ProposedDT SpecifiedDT

IE Addl : Accumulator DoubleQverride 0

[# Addi: output DoubleQverride] findt(1,32,17)

IE Add2 : Accumulator DoubleQOverride |:|

[# Addz: output DoubleOverride] findt(1,32,17)

[# Adds : Accumulator DoubleOverride =

[# 4dd3: output DoubleQverride 0 findt(l,32,17)

[Data Type Conversionl DoubleOverride 0 findt(l,16,10)

IE zainl : Gain DoubleQOverride |:|

[Gainl DoubleQverride [fixdt(1,32,17)

[# Gain2: Gain DoubleOverride =

[# Gain2 DoubleOverride | fixdt(l,32,17)

IE Gain3 : Gain DoubleQverride 0

[# Gain3 DoubleQverride 0 findt,32.17

IE zaind : Gain DoubleQOverride fixdt(1,5,0)

[8 Gaind DoubleOverride fidt(1,5,1)

I# ounn DoubleOverride &= :

IE Unit Delayl DoubleQverride D

IE Unit Delay2 DoubleQverride D

8 To see how the target hardware affects the word length proposal, change
the target hardware to FPGA/ASIC.

a Inthe model, select Simulation > Model Configuration Parameters.

9-61

9 Automatic Data Typing

b In the Configuration Parameters dialog box, select Hardware
Implementation.

¢ On the Hardware Implementation pane, set Device vendor to
ASIC/FPGA. Simulink automatically sets the Device type to ASIC/FPGA.

d Click Apply and close the Configuration Parameters dialog box.

9 On the Fixed-Point Tool Automatic data typing for selected system
pane, click the Propose word lengths button.

Because the target hardware is an FPGA, there are no constraints on the
word lengths that the Fixed-Point Tool proposes. The word length for
Gain4:Gain is 3 and for Gain4 is 7.

| Contents of: ex_moving_average™ (mmo-dbl)

Column View: |Automatic Data Typing View v] Show Details
Mame . Run CompiledDT Accept ProposedDT SpecifiedDT

IE Addl : Accumulator DoubleQOverride |:|

[Addl: Output DoubleQverride fixdt(1,22,17)

[# Addz: Accumulator DoubleOverride =

[# 4dd2: output DoubleOverride fixdt(l,22,17)

IE Add3 : Accumulator DoubleQverride 0

[# Add3: output DoubleQverride findt(1,22,17)

[Data Type Conversionl DoubleOverride fixdt(1,14,10)

[# Gainl: Gain DoubleQverride =

[# Gaim DoubleOverride fisedt(1,20,17)

IE Gain2 : Gain DoubleQverride 0

[# Gain2 DoubleQverride findt(l,19,17)

IE ain3 : Gain DoubleQOverride |:|

[Gain3 DoubleQverride fixdt(1,19,17)

IE Gaind : Gain DoubleOverride fiedt(1,3,0)

Lﬁ Gaind DoubleOverride fiedt(1,7,1)

[ﬁ Outl DoubleOverride

IE Unit Delayl DoubleQverride

IE Unit Delay2 DoubleQOverride

9-62

Propose Data Types Using Multiple Simulations

Propose Data Types Using Multiple Simulations

In this section...

“About This Example” on page 9-63

“Running the Simulation” on page 9-66

About This Example

This example shows how to use the Fixed-Point Tool to propose fraction
lengths for a model based on the simulation minimum and maximum values
captured over multiple simulations.

This example uses the ex_fpt_merge model.

9-63

9 Automatic Data Typing

9-64

& exfpt_ merge =38 =X
File Edit View Display Diagram Simulation Analysis Code Tools Help
E = (ol (it
-8 & mO-2 4P (& - w0 » D 7| v
ex_fpt_merge
® |[*a| ex_fpt_merge -
@ Use of the Fixed-Point Tool 'Overwrite or memge results' option to autoscale blocks based on
El simulation min/max values captured over multiple simulations.
=
Band-Limited -0
Manual Switch DbHeFixPH
L —
Random —
Number1 Add .
o p—
Sine Wave DbHo-FocPt2
»
Ready 100% FixedStepDiscrete

About the Model

The model contains a sine wave input and two alternate noise sources,
band-limited white noise and random uniform noise. The software converts
the sine wave input and selected noise signal to fixed point and then adds
them.

® The Data Type Conversion block Dbl-to-FixPt1 converts the
double-precision noise input to the fixed-point data type fixdt(1,16,15).

® The Data Type Conversion block Dbl-to-FixPt2 converts the
double-precision sine wave input to the fixed-point data type
fixdt(1,16,10).

Propose Data Types Using Multiple Simulations

® The Add block Accumulator data type is fixdt(1,32,30) and Output
data type is fixdt(1,16,14).

Merging Results from Two Simulation Runs

In this example, you use the Fixed-Point Tool to merge the results from two
simulation runs. Merging results allows you to autoscale your model over the
complete simulation range.

1 “Simulate the Model Using Random Uniform Noise” on page 9-66. Using
the Fixed-Point Tool, you simulate the model with the random uniform
noise signal and observe the simulation minimum and maximum values for
the Add block. The Fixed-Point Tool uses these simulation settings:

¢ Fixed-point instrumentation mode: Minimums, maximums and
overflows

¢ Data type override: Double
® Data type override applies to: A11 numeric types

e Merge instrumentation results from multiple simulations is not
selected.

This run provides the simulation results for the random uniform noise
input only.

2 “Simulate the Model Using Band-Limited White Noise” on page 9-67. You
select the band-limited white noise signal and run another simulation
using the same Fixed-Point Tool simulation settings. The Fixed-Point Tool
overwrites the results of the previous run.

This run provides the simulation range for the band-limited white noise
input only.

3 “Merge Results” on page 9-67. You configure the Fixed-Point Tool to merge
results. Select the random uniform noise input again, rerun the simulation,
and observe the simulation results for the Add block.

This run provides the simulation range based on the entire set of input
data for both noise sources.

9-65

9 Automatic Data Typing

4 “Propose Fraction Lengths Based on Merged Results” on page 9-67. The
Fixed-Point Tool uses the merged simulation minimum and maximum
values to propose scaling for each block to ensure maximum precision while
spanning the full range of simulation values.

Running the Simulation

Simulate the Model Using Random Uniform Noise

1 Open the ex_fpt_merge model. At the MATLAB command line, enter:

addpath(fullfile(docroot, 'toolbox', 'fixpoint', 'examples'))
ex_fpt_merge

2 From the model main menu, select Analysis > Fixed-Point Tool.

3 On the Fixed-Point Tool Shortcuts to set up runs pane, click the
Model-wide double override and full instrumentation button to set:

¢ Data type override to Double. This option enables each of the model’s
subsystems to use its locally specified data type settings.

* Fixed-point instrumentation mode to Minimums, maximums and
overflows.

® The run name to DoubleOverride.
4 In the Fixed-Point Tool, click the Simulate button g

The Simulink software simulates the ex_fpt_merge model, using the
random uniform noise signal. Afterward, the Fixed-Point Tool Contents
pane displays the simulation results for each block that logged fixed-point
data. The tool stores the results in a run named DoubleOverride, denoted
by the DoubleOverride label in the Run column.

5 The SimMin and SimMax values for the Add block are:
SimMin is -3.5822

SimMax is 2.7598

9-66

Propose Data Types Using Multiple Simulations

Simulate the Model Using Band-Limited White Noise

1 In the model, double-click the switch to select the band-limited white
noise signal.

2 In the Fixed-Point Tool, click the Simulate button.

The Simulink software simulates the ex_fpt_merge model, now using
the band-limited white noise signal.

3 The changed values for SimMin and SimMax for the Add block are:
SimMin is now-2.5317

SimMax is now 3.1542

Merge Results

1 In the model, double-click the switch to select the random uniform noise
signal.

2 On the Fixed-Point Tool Data collection pane, select Merge
instrumentation results from multiple simulations, click Apply and
rerun the simulation.

3 The SimMin and SimMax values for the Add block now cover the entire
simulation range for both the random uniform and band-limited white
noise signals.

SimMin is -3.5822

SimMax is 3.1542

Propose Fraction Lengths Based on Merged Results

1 On the Automatic data typing for selected system pane, click the
Propose fraction lengths button.

The Fixed-Point Tool analyzes the data types of all fixed-point blocks whose:

9-67

9 Automatic Data Typing

9-68

* Lock output data type setting against changes by the fixed-point

tools parameter is not selected.

® OQutput data type parameter specifies a generalized fixed-point

number.

® Data types are not inherited.

The Fixed-Point Tool uses the merged minimum and maximum values to
propose fraction lengths for each block. These values ensure maximum
precision while spanning the full range of simulation values. The tool
displays the proposed data types in the Contents pane.

Hame Run
I add: Accumulator DoubleQverride
I Add: output DoubleOverride
I Band-Limited White Noise/Output DoubleOverride
I& Band-Limited White Noise/Output : Gain DoubleOverride
& Data Type Conversion DoubleOverride
I Data Type Conversionl DoubleOverride
12 Manual Switch/Constant DoubleOverride
12 Manual Switch/s-Function DoubleQverride
12 Manual Switch/SwitchContral DoubleQverride

CompiledDT Accept ProposedDT SpecifiedDT

OOODEEOOEE

fixdti1,32,29)
fixdltiL, 16,13)

fixdtiL, 16,13]
fixdlt(L, 16,15)

SimMin S\mM|| I||||‘||I4m ProposedMax

View Simulation Results

View Simulation Results

In this section...

“Compare Runs” on page 9-69
“Compare Signals” on page 9-70
“Inspect Signals” on page 9-71
“Histogram Plot of Signal” on page 9-72
“See Also” on page 9-73

Compare Runs

To compare runs:

1 In one of the runs that you want to compare, select a logged signal.

2 From the Fixed-Point Tool menu, select Results > Compare Runs or
click

3 If there are more than two runs, in the Compare Runs Selector dialog
box, select the run that you want to compare, and then click OK.

On the upper axes, the Simulation Data Inspector plots the signal in both

selected runs. On the lower axes, the Simulation Data Inspector plots the
difference between those runs.

9-69

9 Automatic Data Typing

[Simulation Data Inspector® =R ==

File Plot Help
DEdEaFRdaRaR e

‘ Inspectiugna\sl Cnmparei\gna\s| Compareﬂulls‘

Signals v
Run 1 FPA_Reference - 04
RuN2 | iitiafixed_point + Tcomael B 0 e Sig 1
Sig 2
Options 0.08 '8
Plot Result BlockPathl Al 0.06
@ edfixed_point_workflow/Controller Subsystem/Chart 0
“_ ¢ fixed_point_warkflow/Controller Subsystemy/Discrete Filter
ex_fixed_point_warkflow/Controller Subsystem/Lookup Table for Gain 0.02
0 ex_fixed_point_workflow/Controller Subsystem/Lookup Table for Chart 0
002k, L ' L L L L
0 2 4 6 8 10 12
2 Diffe
10 ifference .

Compare Signals
To compare signals:

1 In one of the runs that you want to compare, select a logged signal.

2 From the Fixed-Point Tool menu, select Results > Compare Signals

or click ﬂ

3 If there are more than two runs, in the Compare Runs Selector dialog
box, select the run that you want to compare, and then click OK.

On the upper axes, the Simulation Data Inspector plots the signal in both

selected runs. On the lower axes, the Simulation Data Inspector plots the
difference between those runs.

9-70

View Simulation Results

@ Simulation Data Inspector® EI@

File Plot Help
Dod 8FRAAEHTE | e

Inspect Signals Compare Signals | Compare Runs

Signals
Sigl Sig2 Block Mame Signal Name Line 01t
FPA_Reference
= FPA_Reference 0.08
F Chart SL_Chartl — 0.06}
@ Discrete Filter SL_Discrete F.., ™=
0.041
Lookup Tabl.. SL_Lookup T.. ==
Lookup Tabl... SL_Lookup T... == 002}
= Initial_Fixed_Point
0 % / . s " I
Chart SL_Chartl
@ Discrete Filter SL_Discrete F... == -0.02L, L L L L L L

Lookup Tabl... SL_Lookup T...

Lookup Tabl... SL_Leckup T...
r B P x10® Difference

—Difference

Inspect Signals

To inspect a signal:

1 Select the logged signal that you want to inspect.

2 From the Fixed-Point Tool menu, select Results > Inspect Signal or click
o

o

The Simulation Data Inspector plots data as a function of time.

9-71

9 Automatic Data Typing

[+ Simulation Data Inspector™ =

File Plot Help
EEFIEEEEEEETIE

‘ IIISPECtSiSllIE|5| CompareS\gnalsl CompareRun;‘

FPA_Reference .
=l FPA_Reference 0.1+
[T] Chart SL_Chartl
Discrete Filter SL_Discrete Filterl —
[7] Lookup Tablefor Gain 5L_Lookup Tablefar Gainl — 0.08
(=] Lockup Table for C... 5L_Lockup Table for Chartl —
0.06
0.04
0.02

4 m] » -0.02(
Change Grouping 0 2 4 6 § 10 12 14

Histogram Plot of Signal

To view the histogram plot of a signal:

1 Select the logged signal that you want to plot.

2 From the Fixed-Point Tool menu, select Results > Histogram Plot of
Signal or click M

The histogram plot helps you visualize the dynamic range of a signal. It
provides information about the:

e Total number of samples (N).

¢ Maximum number of bits to prevent overflow.

9-72

View Simulation Results

e Number of times each bit has represented the data (as a percentage of the
total number of samples).

e Number of times that exact zero occurred (without the effect of
quantization). This number does not include the number of zeroes that
occurred due to rounding.

You can use this information to estimate the word size required to represent
the signal.

i "

Histogram Plot E=H EcR =
File Edit View Insert Tools | Desktop Window Help u
Ddde | | ARROTDEL- @ 0EH 0D
Controller Subsystem/Discrete Filter (Final_fixed point)
100 ¢
=
L
n 10F
=
w
(k]
(&)
=
z
3 1
(&)
o
o . 1 1
-20 -15 -10 -5 0 5
ceil(log,, |x|)
See Also

e “Viewing Results With the Simulation Data Inspector” on page 9-75
® “Propose Fraction Lengths Using Simulation Range Data” on page 9-45

9-73

9 Automatic Data Typing

® “Converting a Model from Floating- to Fixed-Point Using Simulation Data”
on page 5-14

9-74

Viewing Results With the Simulation Data Inspector

Viewing Results With the Simulation Data Inspector

Why Use the Simulation Data Inspector

Using the Simulation Data Inspector to inspect and compare data after
converting your floating-point model to fixed point facilitates tracking
numerical error propagation.

When to Use the Simulation Data Inspector
Use the Simulation Data Inspector to:

¢ Plot multiple signals in one or more axes

e Compare a signal in different runs

¢ Compare all logged signal data from different runs
¢ Export signal logging results to a MAT-file

® Specify tolerances for signal comparison

e (Create a report of the current view and data in the Simulation Data
Inspector

What You Can Inspect in the Simulation Data
Inspector

The Fixed-Point Tool uses the Simulation Data Inspector tool plotting
capabilities that enable you to plot signals for graphical analysis. The tool can
access signal data that resides in the MATLAB workspace, allowing you to
plot simulation results associated with:

® Scope blocks whose Save data to workspace parameter is selected
* To Workspace blocks

® Root-level Outport blocks, when the Output check box on the Data
Import/Export pane of the Configuration Parameters dialog box is
selected

® Logged signal data

9-75

9 Automatic Data Typing

Tip The Contents pane of the Fixed-Point Tool displays an antenna icon
I#] next to items that you can plot.

See Also

* “Validate System Behavior”
e fxptdlg

9-76

Range Analysis

¢ “How Range Analysis Works” on page 10-2

¢ “Derive Ranges” on page 10-7

¢ “Derive Ranges at the Subsystem Level” on page 10-10

* “View Derived Range Information in the Fixed-Point Tool” on page 10-12
¢ “Range Analysis Examples” on page 10-13

® “Derive Ranges for a Referenced Model” on page 10-28

® “Propose Data Types for a Referenced Model” on page 10-33

¢ “Deriving Ranges for a Referenced Model” on page 10-35

¢ “Unsupported Simulink Software Features” on page 10-37

e “Supported and Unsupported Simulink Blocks” on page 10-39

1 0 Range Analysis

How Range Analysis Works

10-2

In this section...

“System Requirements” on page 10-2
“Analyzing a Model with Range Analysis” on page 10-2
“Automatic Stubbing” on page 10-5

“Model Compatibility with Range Analysis” on page 10-6

System Requirements

Range analysis:

¢ Requires a Simulink Fixed Point license.

¢ Does not run on Mac platforms.

Analyzing a Model with Range Analysis

The model that you want to analyze must be compatible with range analysis.
If your model is not compatible, either replace unsupported blocks or divide
the model so that you can analyze the parts of the model that are compatible.
For more information, see “Model Compatibility with Range Analysis” on
page 10-6.

The Simulink Fixed Point software performs a static range analysis of your
model to derive minimum and maximum range values for signals in the
model. The software analyzes the model behavior and computes the values
that can occur during simulation for each block Outport. The range of these
values is called a derived range.

The software statically analyzes the ranges of the individual computations in
the model based on:

e Specified design ranges, known as design minimum and maximum values,
for example, minimum and maximum values specified for:
= Inport and Outport blocks
= Block outputs

How Range Analysis Works

= Input, output, and local data used in MATLAB Function and Stateflow
Chart blocks

= Simulink data objects (Simulink.Signal and Simulink.Parameter
objects)

¢ Inputs

e The semantics of each calculation in the blocks

If the model contains objects that the analysis cannot support, where possible,
the software uses automatic stubbing. For more information, see “Automatic
Stubbing” on page 10-5.

The range analysis tries to narrow the derived range by using all the specified
design ranges in the model. The more design range information you specify,
the more likely the range analysis is to succeed. As the software performs the
analysis, it derives new range information for the model. The software then
attempts to use this new information, together with the specified ranges, to
derive ranges for the remaining objects in the model.

For models that contain floating-point operations, range analysis might
report a range that is slightly larger than expected. This difference is due to
rounding errors because the software approximates floating-point numbers
with infinite-precision rational numbers for analysis and then converts to
floating point for reporting.

10-3

1 0 Range Analysis

10-4

The following table summarizes how the analysis derives range information
and provides links to examples.

When...

How the Analysis
Works

Examples

You specify design
minimum and
maximum data for
a block output.

The derived range at
the block output is
based on these specified
values and on the
following values for
blocks connected to its
inputs and outputs:

¢ Specified minimum
and maximum values

® Derived minimum
and maximum values

“Derive Ranges Using
Design Minimum and
Maximum Values” on
page 10-13

A parameter on a block
has initial conditions
and a design range.

The analysis takes both
factors into account by
taking the union of the
design range and the
initial conditions.

“Derive Ranges
Using Block Initial
Conditions” on page
10-15

The model contains
a global tunable
parameter with a
specified range. (See
“Global Tunable
Parameters”)

The analysis takes
into account the
range specified for
the parameter and
ignores the value.

“Derive Ranges
Using Design Range
Information for
Simulink.Parameter
Objects” on page 10-17

The model contains
a global nontunable
parameter with a
specified range.

The analysis does not
take into account the
range specified for the
parameter. Instead,
it uses the parameter
value.

“Derive Ranges
Using Design Range
Information for
Simulink.Parameter
Objects” on page 10-17

How Range Analysis Works

When...

How the Analysis
Works

Examples

The model contains
insufficient design
range information.

The analysis cannot
determine derived
ranges. You must
specify more design
range information and
rerun the analysis.

“Providing More Design
Range Information” on
page 10-23

The analysis results
might depend on block
sorting order which
determines the order
in which the software
analyzes the blocks. For
more information, see
“Control and Displaying
the Sorted Order”.

The model contains
conflicting design range
information.

The analysis cannot
determine the derived
minimum or derived
maximum value for an
object. The Fixed-Point
Tool generates an
error. To fix this error,
examine the design
ranges specified in
the model to identify
inconsistent design
specifications. Modify
them to make them
consistent.

“Fixing Design Range
Conflicts” on page 10-25

Automatic Stubbing

What is Automatic Stubbing?
Automatic stubbing is when the software considers only the interface of the

unsupported objects in a model, not their actual behavior. Automatic stubbing

lets you analyze a model that contains objects that the Simulink Fixed Point

10-5

1 0 Range Analysis

10-6

software does not support. However, if any unsupported model element
affects the derivation results, the analysis might achieve only partial results.

How Automatic Stubbing Works

With automatic stubbing, when the range analysis comes to an unsupported
block, the software ignores ("stubs") that block. The analysis ignores the
behavior of the block. As a result, the block output can take any value.

The software cannot “stub” all Simulink blocks, such as the Integrator block.
See the blocks marked “not stubbable” in “Supported and Unsupported
Simulink Blocks” on page 10-39.

Model Compatibility with Range Analysis

To verify that your model is compatible with range analysis, see:

¢ “Unsupported Simulink Software Features” on page 10-37
e “Supported and Unsupported Simulink Blocks” on page 10-39
¢ “Limitations of Support for Model Blocks” on page 10-48

Derive Ranges

Derive Ranges

1 Verify that your model is compatible with range analysis. See “Model
Compatibility with Range Analysis” on page 10-6.

2 In Simulink, open your model and set it up for use with the Fixed-Point
Tool. For more information, see “Set Up the Model” on page 9-25.

3 From the Simulink Tools menu, select Fixed-Point Tool.

4 In the Fixed-Point Tool Model Hierarchy pane, select the system or
subsystem of interest.

5 If you have a floating-point model, use the Fixed-Point Advisor to prepare
the model for conversion.

a In the Fixed-Point Tool Fixed-point preparation for selected system
pane, click the Fixed-Point Advisor button.

b Run each task in the Fixed-Point Advisor. For more information, see
“Preparation for Fixed-Point Conversion” on page 5-2.

The Fixed-Point Advisor:
® Checks the model against fixed-point guidelines.
e Jdentifies unsupported blocks.

¢ Removes output data type inheritance from blocks that use floating-point
inheritance.

e Allows you to promote simulation minimum and maximum values
to design minimum and maximum values. This capability is useful
if you have not specified design ranges and you have simulated the
model with inputs that cover the full intended operating range. For
more information, see “Specify block minimum and maximum values”
on page 12-33.

6 In the Settings for selected system pane, set Data type override to
Double, then click Apply.

Using this setting, the Fixed-Point Tool derives ranges for the full range.
Otherwise, the tool uses the representable range of the data type specified

10-7

1 0 Range Analysis

on the block to derive a narrower range. The tool then propagates this
narrower range through the model.

7 Optionally, in the Data collection pane Store results in run field,
specify a run name. Specifying a unique run name avoids overwriting
results from previous runs.

10-8

Derive Ranges

8 In the Fixed-Point Tool, click the Derive min/max values for selected

system button.

The analysis runs and tries to derive range information for objects in the
selected system. Your next steps depend on the analysis results.

Analysis Results

Fixed-Point Tool
Behavior

Next Steps

For More
Information

Successfully derives
range data for the
model.

Displays the derived
minimum and
maximum values
for the blocks in the
selected system.

Review the derived
ranges to determine
if the results are
suitable for proposing
data types. If not,
you must specify
additional design
information and rerun
the analysis.

“View Derived Range
Information in the
Fixed-Point Tool” on
page 10-12

Fails because the
model contains blocks
that the software does
not support.

Generates an

error and provides
information about the
unsupported blocks.

To fix the error,
review the error
message information
and replace the
unsupported blocks.

“Model Compatibility
with Range Analysis”
on page 10-6

Cannot derive range
data because the
model contains
conflicting design
range information.

Generates an error.

To fix this error,
examine the design
ranges specified in
the model to identify
inconsistent design
specifications. Modify
them to make them
consistent.

“Fixing Design Range
Conflicts” on page
10-25

Cannot derive range
data for an object
because there is
insufficient design
range information

specified on the model.

Highlights the results
for the object.

Examine the model
to determine which
design range
information is
missing.

“Providing More
Design Range
Information” on page
10-23

10-9

1 0 Range Analysis

Derive Ranges at the Subsystem Level

In this section...

“Deriving Ranges at the Subsystem Level” on page 10-10

“Derive Ranges at the Subsystem Level” on page 10-11

Deriving Ranges at the Subsystem Level

You can derive range information for individual atomic subsystems and
atomic charts. When you derive ranges at the model level, the software takes
into account all information in the scope of the model. When you derive
ranges at the subsystem level only, the software treats the subsystem as a
standalone unit and the derived ranges are based on only the local design
range information specified in the subsystem or chart. Therefore, when you
derive ranges at the subsystem level, the analysis results might differ from
the results of the analysis at the model level.

For example, consider a subsystem that has an input with a design minimum
of -10 and a design maximum of 10 that is connected to an input signal with
a constant value of 1. When you derive ranges at the model level, the range
analysis software uses the constant value 1 as the input. When you derive
ranges at the subsystem level, the range analysis software does not take the
constant value into account and instead uses [-10, 10] as the range.

When to Derive Ranges at the Subsystem Level
Derive ranges at the subsystem level to facilitate:

e System validation

It is a best practice to analyze individual subsystems in your model one at a
time. This practice makes it easier to understand the atomic behavior of
the subsystem. It also makes debugging easier by isolating the source of
any issues.

e (Calibration

The results from the analysis at subsystem level are based only on the
settings specified within the subsystem. The proposed data types cover
the full intended design range of the subsystem. Based on these results,

10-10

Derive Ranges at the Subsystem Level

you can determine whether you can reuse the subsystem in other parts of
your model.

Derive Ranges at the Subsystem Level

The complete procedure for deriving ranges is described in “Derive Ranges”
on page 10-7.

To derive ranges at the subsystem level, the key points to remember are:

® The subsystem or subchart must be atomic.

¢ In the Fixed-Point Tool Model Hierarchy pane, select the subsystem
of interest.

* In the Settings for selected system pane, set Data type override to
Double, then click Apply.

Tip If the parent of the selected subsystem controls the data type override
setting of the subsystem, first set the parent Data type override to Use
local settings and then set the subsystem Data type override to
Double.

Using this setting, the Fixed-Point Tool derives ranges for the full range.
Otherwise, if the subsystem uses fixed-point data types, the tool uses the
representable range of the specified data types to derive a narrower range.
The tool then propagates this narrower range through the subsystem.

¢ In the Data collection pane Store results in run field, specify a run
name. Specifying a unique run name avoids overwriting results from
previous runs. This run contains derived minimum and maximum values
that take into account the full intended design range of the subsystem.

10-11

1 0 Range Analysis

View Derived Range Information in the Fixed-Point Tool

10-12

After you use the Fixed-Point Tool to derive ranges for a model, the
Fixed-Point Tool Contents pane displays the derived minimum and
maximum values for each object in the selected system.

O outt DoubleDverside

) Fovea- poien Toet [E=REcE
Fie Cofect Autsscaling Resuits Fum View Toals Meip
B ®WEO ogd EEE soMe =,
‘Hocel | | : dervved_min_max_L fmma-) P
W dewea_ min ma L mms-dbl) = = i
Cohurmn View: | Bernved MinfMax View 7| Show Deipls 15| Fumd ot advess
CompilecOT CompiledDesignMin CompiledDesigniar Dermedhlin Dermvedhlax

Shortruts to set up runs

21 Madel-mie dousie averide and fl nstrumentation
[1221] Mo s overeice aned Rl rsbrumsertition
A iy

Sattngs for selected systom

Fuumclgxmit ambuamen o mesdn:

Mg, manamums and averfiaws =

Data type overide:

Cota type overnide apples fo:
Doutie]

=] (M bpes z
D coecton
Storeresm AR DoubleDvamde

(D] Seate

(| orrom e oo o ek

] Highight results with patental issuss.
Bestsematis dika byping for sakected Epetim

| .o | Propase fracson lengths Confiaure..,

85 Aoty socmptes fracson engirs

[show dansls for salected rest

Q nevert | [

If the analysis cannot derive a minimum or maximum value, the Fixed-Point
Tool highlights the result. To fix the issue, examine the model to identify
which objects have no specified design ranges and add this information. See
“Insufficient Design Range Information” on page 10-20.

‘ Contents of: ex_derived_min_max_4

{mmo-dbl)
Column View: | Derived Min/Max View * | Show Details
Na?ne Run CompiledDT CompiledDesignMin CompiledDesignMax DerivedMin DerivedMax
Il Gain DoubleOverride

1 ounn

DoubleQverride

Range Analysis Examples

Range Analysis Examples

In this section...

“Derive Ranges Using Design Minimum and Maximum Values” on page
10-13

“Derive Ranges Using Block Initial Conditions” on page 10-15

“Derive Ranges Using Design Range Information for Simulink.Parameter
Objects” on page 10-17

“Insufficient Design Range Information” on page 10-20

“Providing More Design Range Information” on page 10-23

“Fixing Design Range Conflicts” on page 10-25

Derive Ranges Using Design Minimum and Maximum

Values

This example shows how the range analysis narrows the derived range for the
Outport block. This range is based on the range derived for the Add block
using the design ranges specified on the two Inport blocks and the design
range specified for the Add block.

1 Open the ex_derived min_max_1 model. At the MATLAB command line,
enter:

addpath(fullfile(docroot, 'toolbox','fixpoint', 'examples'))
ex_derived_min_max_1

10-13

1 0 Range Analysis

10-14

P4 ex_derived_min_max_1 EI@
File Edit View Display Diagram Simulation Analysis Code Tools Help
2 = o iii

-8 & ED@' G > P ») v @y T
| ex_derived_min_max_1 |
® |[Pa)ex_derived_min_max_1 -
G}
E3
= Int

Min=150
Mex=100 >+

S s €
Ao Cutl
Mir=-125

Mae=55

In2

Min=50

Mex=35
b
Ready 100% FixedStepDiscrete

The model uses block annotations to display the specified design minimum
and maximum values for each block.

® Int1 design range is [-50,100].

® In2 design range is [-50,35].

® Add block design range is [-125,55].

Tip To edit block annotations, right-click the block and, from the context
menu, select Properties. In the Block Properties dialog box, select the
Block Annotation tab. For more information, see “Block Annotation

Properties”.

Range Analysis Examples

2 From the Simulink Analysis menu, select Fixed-Point Tool.

3 In the Settings for selected system pane, set Data type override to
Double, then click Apply.

The Fixed-Point Tool derives ranges for the full range. If you do not set
Data type override to Double, the tool uses the representable range of the
data type specified on the block to derive a narrower range and propagates
this narrower range through the model.

4 In the Fixed-Point Tool, click the Derive min/max values for selected
system button.

To calculate the derived range at the Add block input, the software uses
the design minimum and maximum values specified for the Inport blocks,
[-50,100] and [-50,35]. The derived range at the Add block input is
[-85,150].

In the Contents pane, the Fixed-Point Tool displays the derived and design
minimum and maximum values for the blocks in the selected system.

¢ The derived range for the Add block output signal is narrowed to
[-85,55]. This derived range is the intersection of the range derived
from the block inputs, [-85,150] and the design minimum and
maximum values specified for the block output, [-125,55].

¢ The derived range for the Outport block Out1 is [-85,55], the same as
the Add block output.

Derive Ranges Using Block Initial Conditions

This example shows how range analysis takes into account block initial
conditions.

1 Open the ex_derived_min_max_2 model. At the MATLAB command line,
enter:

addpath(fullfile(docroot, 'toolbox"','fixpoint', 'examples'))
ex_derived_min_max_2

10-15

1 0 Range Analysis

P& ex_derved_min_max_2 E\@
File Edit View Display Diagram Simulation Analysis Code Tools Help
sl " 223

k-8 = mn @ -4 P » (D~ &y~
| ex_derived_min_max_2 |
® || Pa| ex_derived_min_max_2 -
(O]
3
—+
1 } » 1— (1)

Int = Outt

Min=5 Unit Delay

Ma=10 Initial conditions =0
»
Ready 100% FeedStepDiscrete

The model uses block annotations to display the specified design minimum
and maximum values for the Inport block and the initial conditions for
the Unit Delay block.

® In1 design range is [5,10].

¢ Unit Delay block initial condition is 0.

Tip To edit block annotations, right-click the block and, from the context
menu, select Properties. In the Block Properties dialog box, select the
Block Annotation tab. For more information, see “Block Annotation
Properties”.

10-16

Range Analysis Examples

2 From the Simulink Tools menu, select Fixed-Point Tool.

3 In the Settings for selected system pane, set Data type override to
Double, then click Apply.

The Fixed-Point Tool derives ranges for the full range. If you do not set
Data type override to Double, the tool uses the representable range of the
data type specified on the block to derive a narrower range and propagates
this narrower range through the model.

4 In the Fixed-Point Tool, click the Derive min/max values for selected
system button.

In the Contents pane, the Fixed-Point Tool displays the derived minimum
and maximum values for the blocks in the model.

The derived minimum and maximum range for the Outport block, Out1,
is [0, 10] . The range analysis derives this range by taking the union of
the initial value, 0, on the Unit Delay block and the design range on the
block, [5,10].

5 Change the initial value of the Unit Delay block to 7.
a Double-click the Unit Delay block.

b In the Block Parameters dialog box, set Initial conditions to 7,
then click OK.

¢ In the Fixed-Point Tool, click the Derive min/max values for selected
system button.

Because the analysis takes the union of the initial conditions, 7, and the
design range, [5,10], on the Unit Delay block, the derived range for the
block is still [5,10].

Derive Ranges Using Design Range Information for
Simulink.Parameter Objects

This example shows how the range analysis takes into account design range
information for Simulink.Parameter objects only if they are global tunable
parameters. (See “Global Tunable Parameters”.) Otherwise, the analysis uses
the value of the parameter.

10-17

1 0 Range Analysis

1 Open the ex_derived min_max_3 model. At the MATLAB command line,

enter:

addpath(fullfile(docroot, 'toolbox"','fixpoint', 'examples'))
ex_derived_min_max_3

Pl ex_derived_min_max_3 =1 Eo>
File Edit View Display Diagram Simulation Analysis Teols Help
=]]| == (ol
B8 a BHe-EL4®b » @-
| ex_derived_min_max_3 |
® ex_derived_min_max_3 -
Q Storage Class Defined on Parameter Objects - Mon-tunable
- :{} »(1)
= I , . Ot
. Gain1 GainDown1
Min=1
Masc= 2
Siorage Class Defined in Teble - Non-tunsble
D' .'-"l’h ;.."2\\ 2)
In2 L L outz
. Gain2 GainDown2
Min=1
M= 2
Storage Clsss Defined on Parameter Objects - Simulink Global {tunablg)
(2 %ﬁx“i =t;‘\ SED)
In3 y L’f’ outa
. Gain2 GainDown2
Min=1
Mae=2
Storage Cless Defined in Teble - Simulink Global {tunable)
2> ()
Ine ¥ - Outd
. Gaind GainDown4
Min=1
Max=2
>
Ready 100% FixedStepDiscrete

10-18

Range Analysis Examples

The model uses block annotations to display the specified design minimum
and maximum values for the Inport blocks. The design range for all Inport
blocks 1s [1,2].

Tip To edit block annotations, right-click the block and, from the context
menu, select Properties. In the Block Properties dialog box, select the
Block Annotation tab. For more information, see “Block Annotation
Properties”.

From the Simulink Analysis menu, select Fixed-Point Tool.

In the Settings for selected system pane, set Data type override to
Double , then click Apply.

The Fixed-Point Tool derives ranges for the full range. If you do not set
Data type override to Double, the tool uses the representable range of the
data type specified on the block to derive a narrower range and propagates
this narrower range through the model.

In the Fixed-Point Tool, click the Derive min/max values for selected
system button.

In the Contents pane, the Fixed-Point Tool displays the derived minimum
and maximum values for the blocks in the model.

Block Derived Reason

Range
Gain1 [2,4] The gain parameters specified on Gain blocks
Gain2 [2,4] Gain1 and Gain2 are Simulink.Parameter

objects that have their storage class specified
as Auto. They are non-tunable parameters. In
this case, the range analysis uses the value
of the Simulink.Parameter object, which is
2, and ignores the design range specified for
these parameters.

10-19

1 0 Range Analysis

Block Derived | Reason

Range
Gain3 [1,20] The Simulink.Parameter objects that specify
Gain4 [1,20] the gain parameters for these Gain blocks

are tunable parameters. The range analysis
takes into account the design range, [1,10],
specified for these parameters.

Insufficient Design Range Information

This example shows that if the analysis cannot derive range information
because there is insufficient design range information, you can fix the issue
by providing additional input design minimum and maximum values.

1 Open the ex_derived_min_max_4 model. At the MATLAB command line,

enter:

addpath(fullfile(docroot, 'toolbox"','fixpoint', 'examples'))

10-20

Range Analysis Examples

ex_derived_min_max_4

Pﬁ ex_derived_min_max_4 E\@
File Edit View Display Diagram Simulation Analysis Code Tools Help
[=) Qi
-8 S e MEIRCYC N2 » (D~ @y v
| ex_derived_min_max_4 |
® ac_derived_min_max_4 hd
E3
- D [
> 2
Ini I“/ Ot
. Gain -
Mir=- Min=-15 Mir={]
Max=]] Mzel 5 Mz=[
»
Ready 88% FixedStepDiscrete

The model uses block annotations to display the specified design minimum

a

nd maximum values for the blocks in the model.

The Inport block In1 has a design minimum of -1 but no specified
maximum value, as shown by the annotation, Max=[1].

The Gain block has a design range of [-1.5,1.5].

The Outport block Out1 has no design range specified, as shown by the
annotations, Min=[], Max=[1].

10-21

1 0 Range Analysis

10-22

Tip To edit block annotations, right-click the block and, from the context
menu, select Properties. In the Block Properties dialog box, select the
Block Annotation tab. For more information, see “Block Annotation
Properties”.

From the Simulink Analysis menu, select Fixed-Point Tool.

In the Settings for selected system pane, set Data type override to
Double, then click Apply.

The Fixed-Point Tool derives ranges for the full range. If you do not set
Data type override to Double, the tool uses the representable range of the
data type specified on the block to derive a narrower range and propagates
this narrower range through the model.

In the Fixed-Point Tool, click the Derive min/max values for selected
system button.

In the Contents pane, the Fixed-Point Tool displays the derived minimum
and maximum values for the blocks in the model. The range analysis is
unable to derive a maximum value for the Inport block, In1. The tool
highlights this result.

Contents of: ex_derived_min_max_4 (mmo-dbl)

Column View: [Derived MinMax View * | Show Details
NaFne Run CompiledDT CompiledDesignMin CompiledDesignMax DerivedMin DerivedMax
71 Gain DoubleOverride

1-1 double
El outt DoubleOverride

To fix the issue, specify a design maximum value for In1:
a In the model, double-click the Inport block, In1.

b In the block parameters dialog box, select the Signal Attributes tab.
¢ On this tab, set Maximum to 1 and click OK.

Range Analysis Examples

The model displays the updated maximum value in the block annotation

for Int.

6 In the Fixed-Point Tool, click the Derive min/max values for selected
system button to rerun the range analysis.

The range analysis can now derive ranges for the Inport and Gain blocks.

Block Derived Reason
Range

Inport [-1,1] Uses specified design range on the block.

In1

Gain [-1.5,1.5] | The design range specified on the Gain block
1s[-1.5,1.5]. The derived range at the block
inputis [-1,1] (the derived range at the output
of In1). Therefore, because the gain is 2, the
derived range at the Gain block output is the
intersection of the propagated range, [-2,2],
and the design range, [-1.5,1.5].

Outport [-1.5,1.5] | Same as Gain block output because no locally

In2 specified design range on Outport block.

Providing More Design Range Information

This example shows that if the analysis cannot derive range information
because there is insufficient design range information, you can fix the issue
by providing additional output design minimum and maximum values.

1 Open the ex_derived_min_max_5 model. At the MATLAB command line,

enter:

addpath(fullfile(docroot, 'toolbox"','fixpoint', 'examples'))

ex_derived_min_max_5

10-23

1 0 Range Analysis

10-24

'bi ex_denved_min_max_5 El@
File Edit View Display Diagram Simulation Analysis Code Tools Help
B = | (ol { i
-8 =2 me-2 4ok &~ » 9 - & -
| ex_derived_min_max_5 |
® |[*a ex_derived_min_max_5 A
@)
3
= o 1 o3
z

Unit Delay Gain? Dt

|

I

GainZ
b
Ready 92% FixnedStepDiscrete

The model uses block annotations to display the specified design minimum
and maximum values for the blocks in the model.

¢ The Inport block In1 has a design range of -10,20.

¢ The rest of the blocks in the model have no specified design range.

Tip To edit block annotations, right-click the block and, from the context
menu, select Properties. In the Block Properties dialog box, select the
Block Annotation tab. For more information, see “Block Annotation
Properties”.

From the Simulink Analysis menu, select Fixed-Point Tool.

In the Settings for selected system pane, set Data type override to
Double , then click Apply.

The Fixed-Point Tool derives ranges for the full range. If you do not set
Data type override to Double, the tool uses the representable range of the

Range Analysis Examples

data type specified on the block to derive a narrower range and propagates
this narrower range through the model.

4 In the Fixed-Point Tool, click the Derive min/max values for selected
system button.

In the Contents pane, the Fixed-Point Tool displays the derived minimum
and maximum values for the blocks in the model. Because one of the Add
block inputs is fed back from its output, the analysis is unable to derive an
output range for the Add block or for any of the blocks connected to this
output. The Fixed-Point Tool highlights these results.

Contents of: ex_derived_min_max_5% (dbl)

Column View: [Derived MinMax View -] Show Details

=
MName Run CompiledDT CompiledDesignMin CompiledDesigniax DerivedMin Derivediax
louble T.02 L

5 To fix the issue, specify design minimum and maximum values for Out1:
a In the model, double-click the Outport block, Out1.
b In the block parameters dialog box, select the Signal Attributes tab.
¢ On this tab, set Minimum to -20 and Maximum to 40 and click OK.

6 In the Fixed-Point Tool, click the Derive min/max values for selected
system button to rerun the range analysis.

The range analysis uses the minimum and maximum values specified for
Out1, [-20,40] and the gain value of Gain3, 2, to derive an input range for
Gain3, [-10,20]. Because the input of Gain3 feeds back to the input of the
Add block, the analysis now derives ranges for all objects in the model.

Fixing Design Range Conflicts

This example shows how to fix design range conflicts. If you specify conflicting
design minimum and maximum values in your model, the range analysis

10-25

1 0 Range Analysis

software reports an error. To fix this error, examine the design ranges
specified in the model to identify inconsistent design specifications. Modify
them to make them consistent. In this example, the output design range
specified on the Outport block conflicts with the input design ranges specified
on the Inport blocks.

1 Open the ex_range_conflict model. At the MATLAB command line,

enter:

addpath(fullfile(docroot, 'toolbox"','fixpoint', 'examples'))
ex_range_conflict

#i ex_range_conflict E\@
File Edit View Display Diagram Simulation Analysis Code Tools Help
i — T RAA
L~ @ = -2 4 » (@ 7 g~
ex_range_conflict
® ||Pa|ex_range_conflict -
@,
] Cor—
Ini
= :':z_::': >4
SN GD'
Outi
+ Mt
.—l =
In2
»
Ready 88% FixedStepDiscrete

The model uses block annotations to display the specified design minimum
and maximum values for the blocks in the model.

e The Inport blocks In1 and In2 have a design range of [-1,1].
® The Outport block Out1 has a design range of [10,20].

10-26

Range Analysis Examples

Tip To edit block annotations, right-click the block and, from the context
menu, select Properties. In the Block Properties dialog box, select the
Block Annotation tab. For more information, see “Block Annotation
Properties”.

2 From the Simulink Analysis menu, select Fixed-Point Tool.

3 In the Settings for selected system pane, set Data type override to
Double , then click Apply.

The Fixed-Point Tool derives ranges for the full range. If you do not set
Data type override to Double, the tool uses the representable range of the
data type specified on the block to derive a narrower range and propagates
this narrower range through the model.

4 In the Fixed-Point Tool, click the Derive min/max values for selected
system button.

The Fixed-Point Tool generates an error because the range analysis fails.
It reports an error because the derived range for the Sum block, [-2,2] is
outside the specified design range for the Outport block, [10,20].

5 Close the error dialog box.

6 To fix the conflict, change the design range on the Outport block to [-10, 20]
so that this range includes the derived range for the Sum block.

a In the model, double-click the Outport block.
b In the block parameters dialog box, click the Signal Attributes tab.
¢ On this tab, set Minimum to -10 and click OK.

7 In the Fixed-Point Tool, click the Derive min/max values for selected
system button to rerun the range analysis.

The range analysis derives a minimum value of -2 and a maximum value
of 2 for the Outport block.

10-27

1 0 Range Analysis

Derive Ranges for a Referenced Model

This example shows how to derive ranges for a model that contains multiple
instances of the same referenced model.

Derive Ranges
1 Open the ex_derived_sum_multiInstance model. At the MATLAB

command line, enter:

addpath(fullfile(docroot, 'toolbox','fixpoint', 'examples'))
ex_derived_sum_multi_instance

Pﬁ ex_derived_surm_multi_instance EI@
File Edit View Display Diagram Simulation Analysis Code Tools Help
17| == T Pii
-8 & g ©-=2 NI &) |v| 10.0 » (P 7| @
| ex_derived_sum_multi_instance
® |["a|ex_derived_sum_multi_instance b hd
@
EZ
: b i B3_sum
= In1
Wfin=-50 gein out D
Max=100 4'I>—’ In2 Outt
Gaint Meodel
ex_sum
In1 -
Outi
D] In2 cut2
InZ
Min=-50 Medel1

Ia:x=35

»

The model uses block annotations to display the specified design minimum
and maximum values for the blocks in the model.

® The Inport block In1 has a design range of [-50,100].

10-28

Derive Ranges for a Referenced Model

® The Inport block In2 has a design range of [-50,35].

Tip To edit block annotations, right-click the block and, from the context
menu, select Properties. In the Block Properties dialog box, select the
Block Annotation tab. For more information, see “Block Annotation
Properties”.

The model contains two Model blocks that both reference the ex_sum model.

Py ex sum B=8 EER (>
File Edit View Display Diagram Simulation Analysis Cede Tools Help
-8 a EH-EH GO Q- -
£X_sUm
® ||| ex_sum -
@)
E3
= In
Co—s
» 1)
In2 Out1
-
Mir=]
Mas=]]
>

Initially, the Sum block has no design range information.

10-29

1 0 Range Analysis

10-30

2 From the ex_derived_sum_multi_instance model Analysis menu, select
Fixed-Point Tool.

3 In the Fixed-Point Tool Model Hierarchy pane, select the
ex_derived sum _multi instance model.

4 In the Settings for selected system pane, set Data type override to
Double.

With this setting, the Fixed-Point Tool derives ranges for the full range.
If you do not set Data type override to Double, the tool uses the
representable range of the data type specified on the block to derive a
narrower range and propagates this narrower range through the model.

5 In the Fixed-Point Tool Data collection pane, set Store results in run to
double_ run and then click Apply.

Providing a unique name for the run avoids accidentally overwriting results
from previous runs and enables you to identify the run more easily.

6 In the Fixed-Point Tool Model Hierarchy pane, select the ex_sum model.

The Data type override setting is Off. The setting in the parent model
does not affect the setting in the referenced model — you must change it
manually in the referenced model.

7 For the ex_sum model, set Data type override to Double and then click
Apply.

Changing the setting for any instance of the referenced model changes the
setting on all instances and on the referenced model itself.

8 Save the models in a local writable folder.

The Fixed-Point Tool cannot derive ranges if your model contains unsaved
changes.

9 In the Fixed-Point Tool, select the ex_derived sum_multi instance
model and then click Derive min/max values for selected system.

Derive Ranges for a Referenced Model

To calculate the derived ranges, the software uses the design minimum and
maximum values specified for the Inport blocks in the top-level model,
In1 and In2.

In the Contents pane, the Fixed-Point Tool displays the derived and design
minimum and maximum values for the blocks and referenced models in
the ex_derived_sum_multi_instance model. Some of the derived values
that the Fixed-Point Tool reports are slightly larger than expected. This
difference is due to rounding errors because the software approximates
floating-point numbers with infinite-precision rational numbers for
analysis and then converts them to floating point for reporting.

Model Hierarchy Contents of: ex_derived_sum_multi_instance (mmo-dbl)
4 bﬁ Fixed-Point Tool Root
4 !‘E ex_derived_sum_multi_instance (m)
Model (ex_sum) (fo-dbl)
Modell (ex_sum] (fo-dbl}
B e sum fo-dbl]

Column View: |Derived Min/Max View = | Show Details

Name’ Run CompiledDT CompiledDesignMin CompiledDesignMax DerivedMin DerivedMax

=1 cain run_double
[Gaint run_double
i run_double
2 run_double
I outt run_double
=1 outz run_double

View Derived Ranges for Referenced Model

1 In the Model Hierarchy pane, select the first instance of the referenced
model, Model (ex_sum).

The tool displays the derived minimum and maximum values for this
instance of the referenced model, [-82.001,140.001]. This range

is derived from the outputs of the two Gain blocks, [-40,80] and
[-60,42.001].

2 Select the second instance of the referenced model, Model1 (ex_sum).

The tool displays the derived values for the second instance, [-85, 150].
This range is derived from the referenced model inputs, In1 and In2,
[-50,100] and [-50,35] respectively.

3 Select the node for the referenced model, ex_sum.

For this node, the Fixed-Point Tool displays the merged results for the
derived range for the referenced model which is the union of the results for
each instance of the model, [-85, 150].

10-31

1 0 Range Analysis

Next, you set design range on Sum block in referenced model to see how the
range analysis takes this information into account.

Add Design Range for Sum Block and Derive Ranges

1 In the ex_sum model, double-click the Sum block.

2 In the block parameters dialog box, on the Signal Attributes tab, set
Output minimum to -125 and Output maximum to 50, click OK, and
then save the model.

3 In the Fixed-Point Tool, select the ex_derived sum_multi instance
model and then click Derive min/max values for selected system.

This time, to calculate the derived ranges, the software uses the design
minimum and maximum values specified for the Inport blocks in the
parent model, In1 and In2, and the design minimum and maximum values
specified for the Sum block in the referenced model.

Model Hierarchy Contents of: ex_derived_sum_multi_instance (fo-dbl)
4 P Fixed-Point Tool Root
4 B ex_derived_sum_multi_instance [fo-dbl)

Model (ex_sum} (fo-dbl}

Column View: | Derived MinfMax View ~ | Show Details

Nam}e Run CompiledDT CompiledD: in CompiledD Max DerivedMin Deris
= Gain double_run
Il Gaint double_run
Hm double_run
Hime double_run
= outt double_run
O out2 double_run

Maodell (ex_sum] (fo-dbl}
!E ex_sum (fo-dbl)

4 You can now propose data types for the model based on these derived
minimum and maximum values. See “Propose Data Types for a Referenced
Model” on page 10-33.

See Also

¢ “Deriving Ranges for a Referenced Model” on page 10-35
® “Propose Data Types for a Referenced Model” on page 10-33

10-32

Propose Data Types for a Referenced Model

Propose Data Types for a Referenced Model

This example shows how to propose data types for a referenced model. To run
this example, you must first run “Derive Ranges for a Referenced Model” on
page 10-28.

1 In the Fixed-Point Tool Model Hierarchy pane, select the
ex_derived sum _multi instance model.

2 In the Automatic data typing for selected system pane, click the
Configure link, set Default data type of all floating-point signals to
fixdt(1,16,4) and then click Apply.

3 In the same pane, click Propose fraction lengths, EI.

The Fixed-Point Tool proposes fraction lengths for the inputs In1 and In2
based on the design minimum and maximum values specified on the blocks
in the model and on the derived minimum and maximum values.

The tool does not propose data types for the other blocks because they use
inherited data types. Instead, it displays n/a in the ProposedDT column.
The Fixed-Point Tool might not be able to propose data types for other
reasons, to view more information, click the Show details for selected

result button @

The tool displays the proposed scaling in its Contents pane. It displays the
Automatic Data Typing View to provide information, such as ProposedDT,
ProposedMin, ProposedMax, which are relevant at this stage of the
fixed-point conversion.

4 After reviewing the data type proposals, click Apply accepted fraction
lengths to apply the proposed data types to your model.

10-33

1 0 Range Analysis

See Also

¢ “Derive Ranges for a Referenced Model” on page 10-28
e “Apply Proposed Data Types” on page 9-21

10-34

Deriving Ranges for a Referenced Model

Deriving Ranges for a Referenced Model

In this section...

“Viewing Derived Minimum and Maximum Values for Referenced Models”
on page 10-35

“Data Type Override Settings” on page 10-36
“See Also” on page 10-36

Viewing Derived Minimum and Maximum Values for
Referenced Models

The Fixed-Point Tool derives minimum and maximum values for referenced
models. The simulation mode is not relevant for the analysis — instances of
the referenced models can be in any simulation mode.

The Fixed-Point Tool displays the top-level model that contains the referenced
models and the referenced models in its Model Hierarchy pane. For
example, the ex_derived_sum_multi_instance model contains two instances
of the referenced model ex_sum. The Fixed-Point Tool displays both models
and both instances of the referenced model in the model hierarchy.

Model Hierarchy Contents of: ex_derived_sum_multi_instance (mma-dbl)
4 P Fixed-Point Tool Root
d !E ex_derived_sum_multi_instance [m Column View: |Derived Min/Max View | Show Details
Model (ex_sum] [fo-dbl) - - - —— - - — -
Name Run CompiledDT CompiledDesignMin CompiledDesignMax DerivedMin DerivedMa:
Modell (ex_sumj (fo-dbl) .
!E ex_sum [fo-dbl) H Gain run_double
I Gaim run_double
Himm run_double
Hin run_double
= ouwtt run_double
Il outz run_double

If a model contains multiple instances of the referenced model, the tool
displays each instance of the referenced model as well as a node for the
referenced model. For example, here are the results for the first instance of
the referenced model ex_sum1 in ex_multi_instance.

10-35

10

Range Analysis

10-36

Model Hierarchy Contents of: Maodel (ex_sum) (fo-dbl)
4 P Fixed-Point Tool Root
4 W ex_derived_sum_multi_instanee ffo-dbl) Column View: [Darlvad Min/Max View ¥ | Show Details
Name‘ Run CompiledDT CompiledDesignMin CompiledDesignMax DerivedMin DerivedMa

Modell (ex_sum] (fo-dbl}

EE ex_sum (fo-dbl)

Model [ex_sum) ffo-dbl}
‘EI Sum: Output double_run

Here are the results for the second instance of ex_sum1.

Model Hierarchy Contents of: Model1 (ex_sum) (fo-dbi)
4 P Fixed-Paint Tool Root
4 W ex derived_sum_multi_instance (fo-dbi)

Column View: [DEI’i\dEd Min/Max View ~ | Show Details

Name Run CompiledDT CompiledDesignMin CompiledDesigniax Derivedhin DerivedMa

[%2] Madei (ex_sum) (fo-dbl) I sum: outout doubl
um : Outpu ouble_run

Model (sx_sum) ffo-dbl)
B ex_sum (fo-dbl) ‘

In the referenced model node, the tool displays the union of the results for
each instance of the referenced model.

Model Hierarchy Contents of: ex_sum (fo-dbl)
4 P4 Fixed-Point Tool Root
4 EE ex_derived_sum_multi_instance (fo-dbl)

Column View: [Derwad Min/Max View w | Show Details

Model (ex_sum) ffo-dbl)
Modell (ex_sum] (fo-dbl)
W ex_sum (fo-dbl)

Aameas Run CompiledDT CompiledDesignhfin CompiledD DerivedMin DerivedMa
Ll sum: Output double_run

Data Type Override Settings

When you derive minimum and maximum values for a model that contains
referenced models, the data type override setting for the top-level model does
not control the setting for the referenced models. You must specify the data
type override setting separately for the referenced model.

You can set up user-defined shortcuts across referenced model boundaries.
The factory default shortcuts apply only to the top-level model and so do not
affect the settings of any referenced model.

When you change the fixed-point instrumentation and data type override

settings for any instance of a referenced model, the settings change on all
instances of the model and on the referenced model itself.

See Also

¢ “Derive Ranges for a Referenced Model” on page 10-28

Unsupported Simulink® Software Features

Unsupported Simulink Software Features

The software does not support the following Simulink software features.
Avoid using these unsupported features.

Not Supported Description

Variable-step solvers | The software supports only fixed-step solvers.

For more information, see “Choosing a Fixed-Step
Solver”.

Callback functions The software does not execute model callback
functions during the analysis. The results that the
analysis generates may behave inconsistently with
the expected behavior.

¢ [f a model or any referenced model calls a callback
function that changes any block parameters,
model parameters, or workspace variables, the
analysis does not reflect those changes.

¢ Changing the storage class of base workspace
variables on model callback functions or mask
initializations is not supported.

e (Callback functions called prior to analysis,
such as the PreLoadFcn or PostLoadFcn model
callbacks, are fully supported.

Model callback The software only supports model callback functions
functions if the InitFcn callback of the model is empty.
Algebraic loops The software does not support models that contain

algebraic loops.

For more information, see “Algebraic Loops”.

Masked subsystem The software does not support models whose masked
initialization subsystem initialization modifies any attribute of
functions any workspace parameter.

Complex signals The software supports only real signals.

For more information, see “Complex Signals”.

10-37

1 0 Range Analysis

10-38

Not Supported

Description

Variable-size signals

The software does not support variable-size signals.
A variable-size signal is a signal whose size (number
of elements in a dimension), in addition to its values,
can change during model execution.

Arrays of buses

The software does not support arrays of buses.

For more information, see “Combine Buses into an
Array of Buses”.

Multiword
fixed-point data

types

The software does not support multiword fixed-point
data types.

Nonfinite data

The software does not support nonfinite data (for
example, NaN and Inf) and related operations.

Signals with nonzero
sample time offset

The software does not support models with signals
that have nonzero sample time offsets.

Models with no
output ports

The software only supports models that have one or
more output ports.

Supported and Unsupported Simulink® Blocks

Supported and Unsupported Simulink Blocks

Overview of Simulink Block Support

The following tables summarize the analysis support for Simulink blocks.
Each table lists all the blocks in each Simulink library and describes support
information for that particular block. A dash (—) indicates that the software
supports that block under all conditions. If the software does not support a
given block, where possible, automatic stubbing considers the interface of the
unsupported blocks, but not their behavior, during the analysis. However, if
any of the unsupported blocks affect the simulation outcome, the analysis may
achieve only partial results. If the analysis cannot use automatic stubbing for
a block, the block is marked as “not stubbable”. For more information, see
“Automatic Stubbing” on page 10-5.

Additional Math and Discrete Library

The software supports all blocks in the Additional Math and Discrete library.

Commonly Used Blocks Library

The Commonly Used Blocks library includes blocks from other libraries.
Those blocks are listed under their respective libraries.

Continuous Library

Block Support Notes
Derivative Not supported
Integrator Not supported and not stubbable

Integrator Limited

Not supported and not stubbable

PID Controller

Not supported

PID Controller (2 DOF)

Not supported

Second Order Integrator

Not supported and not stubbable

Second Order Integrator Limited

Not supported and not stubbable

State-Space

Not supported

10-39

1 0 Range Analysis

Block

Support Notes

Transfer Fen

Not supported

Transport Delay

Not supported

Variable Time Delay

Not supported

Variable Transport Delay

Not supported

Zero-Pole

Not supported

Discontinuities Library

The software supports all blocks in the Discontinuities library.

Discrete Library

Block

Support Notes

Delay

Difference

Discrete Derivative

Discrete Filter

The software analyzes through the filter. It does not
derive any range information for the filter.

Discrete FIR Filter

The software analyzes through the filter. It does not
derive any range information for the filter.

Discrete PID Controller

Discrete PID Controller (2 DOF)

Discrete State-Space

Not supported

Discrete Transfer Fen

Discrete Zero-Pole

Not supported

Discrete-Time Integrator

First-Order Hold

Memory

Tapped Delay

Supported and Unsupported Simulink® Blocks

Block

Support Notes

Transfer Fen First Order

Transfer Fen Lead or Lag

Transfer Fen Real Zero

Unit Delay

Zero-Order Hold

Logic and Bit Operations Library

The software supports all blocks in the Logic and Bit Operations library.

Lookup Tables Library

Block

Support Notes

Cosine

Direct Lookup Table (n-D)

Interpolation Using Prelookup

Not supported when:

¢ The Interpolation method parameter is Linear and
the Number of table dimensions parameter is greater
than 4.

or
¢ The Interpolation method parameter is Linear and

the Number of sub-table selection dimensions
parameter is not 0.

1-D Lookup Table

Not supported when the Interpolation method or the
Extrapolation method parameter is Cubic Spline.

2-D Lookup Table

Not supported when the Interpolation method or the
Extrapolation method parameter is Cubic Spline.

10-41

1 0 Range Analysis

Block

Support Notes

n-D Lookup Table

Not supported when:

¢ The Interpolation method or the Extrapolation
method parameter is Cubic Spline.

or
¢ The Interpolation method parameter is Linear and

the Number of table dimensions parameter is greater
than 5.

Lookup Table Dynamic

Prelookup

Sine

Math Operations Library

Block

Support Notes

Abs

Add

Algebraic Constraint

Assignment

Bias

Complex to Magnitude-Angle

Not supported

Complex to Real-Imag

Not supported

Divide

Dot Product

Find Nonzero Elements

Gain

Magnitude-Angle to Complex

Not supported

Supported and Unsupported Simulink® Blocks

Block

Support Notes

Math Function

All signal types support the following Function

parameter settings.

conj hermitian

magnitude~2

mod

rem reciprocal

square

transpose

The software does not support the following Function

parameter settings.

10"u exp

hypot

log log10

pow

Matrix Concatenate

MinMax

MinMax Running Resettable

Permute Dimensions

Polynomial

Product

Product of Elements

Real-Imag to Complex

Not supported

Reciprocal Sqrt

Not supported

Reshape

Rounding Function

Sign

Signed Sqrt

Not supported

Sine Wave Function

Not supported

Slider Gain

Sqrt

Not supported

10-43

1 0 Range Analysis

Block Support Notes

Squeeze =

Subtract —

Sum —

Sum of Elements =

Trigonometric Function Supported when Function is sin, cos, or sincos and
Approximation method is CORDIC.

Unary Minus =

Vector Concatenate —

Weighted Sample Time Math =

Model Verification Library
The software supports all blocks in the Model Verification library.

Model-Wide Utilities Library

Block Support Notes
Block Support Table =

DocBlock =

Model Info —

Timed-Based Linearization Not supported
Trigger-Based Linearization Not supported

Ports & Subsystems Library

Block Support Notes

Atomic Subsystem —

Code Reuse Subsystem =

Configurable Subsystem —

Enable -

10-44

Supported and Unsupported Simulink® Blocks

Block

Support Notes

Enabled Subsystem

Enabled and Triggered Subsystem

Not supported when the trigger control signal specifies a
fixed-point data type.

For Each

Not supported

For Each Subsystem

Not supported

For Iterator Subsystem

Function-Call Feedback Latch

Function-Call Generator

Function-Call Split

Function-Call Subsystem

If

If Action Subsystem

Inport —

Model Supported except for the limitations described in
“Limitations of Support for Model Blocks” on page 10-48.

Model Variants Supported except for the limitations described in
“Limitations of Support for Model Blocks” on page 10-48.

Outport =

Subsystem =

Switch Case

Switch Case Action Subsystem

Trigger

Triggered Subsystem

Not supported when the trigger control signal specifies a
fixed-point data type.

Variant Subsystem

While Iterator Subsystem

10-45

1 0 Range Analysis

Signal Attributes Library

The software supports all blocks in the Signal Attributes library.

Signal Routing Library

Block

Support Notes

Bus Assignment

Bus Creator

Bus Selector

Data Store Memory

Data Store Read

Data Store Write

Demux

Environment Controller

From

Goto

Goto Tag Visibility

Index Vector

Manual Switch

The Manual Switch block is compatible with the
software, but the analysis ignores this block in a model.

Merge

Multiport Switch

Mux

Selector

Switch

Vector Concatenate

Supported and Unsupported Simulink® Blocks

Sinks Library

Block

Support Notes

Display

Floating Scope

Outport (Outl)

Scope

Stop Simulation

Not supported and not stubbable

Terminator

To File

To Workspace

XY Graph

Sources Library

Block

Support Notes

Band-Limited White Noise

Not supported

Chirp Signal

Not supported

Clock

Constant

Supported unless Constant value is inf.

Counter Free-Running

Counter Limited

Digital Clock

Enumerated Constant

From File

Not supported. When MAT-file data is stored in
MATLAB timeseries format, not stubbable.

From Workspace

Not supported

Ground

Inport (In1)

10-47

1 0 Range Analysis

Block

Support Notes

Pulse Generator

Ramp

Random Number

Not supported and not stubbable

Repeating Sequence

Not supported

Repeating Sequence Interpolated

Not supported

Repeating Sequence Stair

Signal Builder

Not supported

Signal Generator

Not supported

Sine Wave

Not supported

Step

Uniform Random Number

Not supported and not stubbable

User-Defined Functions Library

Block

Support Notes

Fen

Supports all operators except ~. Supports only the
mathematical functions abs, ceil, fabs, floor, rem,
and sgn.

Interpreted MATLAB Function

Not supported

MATLAB Function

The software analyzes through the MATLAB Function
block.

Level-2 MATLAB S-Function

Not supported

S-Function

Not supported

S-Function Builder

Not supported

Limitations of Support for Model Blocks

The software supports the Model block, but with the following limitations. The
software cannot analyze a model that contains one or more Model blocks if:

Supported and Unsupported Simulink® Blocks

® The referenced model is protected. Protected referenced models are
encoded to obscure their contents. This feature allows third parties to use
the referenced model without being able to view the intellectual property
that makes up the model.

Note For more information, see “Protected Model”.

¢ The parent model or any of the referenced models gives an error when you
set one of the following model parameters in the Configuration Parameters
dialog box to error:

= Diagnostics > Connectivity > Element name mismatch

= Diagnostics > Connectivity > Mux blocks used to create bus
signals

You can use the Element name mismatch diagnostic along with bus
objects so that your model meets the bus element naming requirements
imposed by some blocks.

If your model contains Mux blocks that create bus signals, refer to “Tips” in
“Mux blocks used to create bus signals” to resolve this problem.

® The Model block uses asynchronous function-call inputs.

® Any of the Model blocks in the model reference hierarchy creates an
artificial algebraic loop. If this occurs, take the following steps:

1 On the Diagnostics pane of the Configuration Parameters dialog box,
set the Minimize algebraic loop parameter to error so that Simulink
reports an algebraic loop error.

2 On the Model Referencing Pane of the Configuration Parameters
dialog box, select the Minimize algebraic loop occurrences parameter.

Simulink tries to eliminate the artificial algebraic loop during simulation.
3 Simulate the model.

4 If Simulink cannot eliminate the artificial algebraic loop, highlight the
location of the algebraic loop by selecting Edit > Update Diagram.

10-49

1 0 Range Analysis

10-50

5 Eliminate the artificial algebraic loop so that the software can analyze
the model. Break the loop with Unit Delay blocks so that the execution
order is predictable.

Note For more information, see “Algebraic Loops”.

The parent model and the referenced model have mismatched data type
override settings. The data type override setting of the parent model and
all of its referenced models must be the same, unless the data type override
setting of the parent model is Use local settings. You can select the
data type override settings for your model in the Tools menu, in the Fixed
Point Tool dialog box under the Settings for selected system pane.

Code Generation

® “Generating and Deploying Production Code” on page 11-2

® “Code Generation Support” on page 11-3

e “Accelerating Fixed-Point Models” on page 11-5

¢ “Using External Mode or Rapid Simulation Target” on page 11-7

® “Optimize Your Generated Code” on page 11-9

® “Optimizing Your Generated Code with the Model Advisor” on page 11-34

11 Code Generation

Generating and Deploying Production Code

11-2

You can generate C code with the Simulink Fixed Point software by using the
Simulink Coder product. The code generated from fixed-point models uses
only integer types and automatically includes all operations, such as shifts,
needed to account for differences in fixed-point locations. You can use the
generated code on embedded fixed-point processors or on rapid prototyping
systems even if they contain a floating-point processor. For more information
about code generation, refer to the Simulink Coder documentation.

You can generate code for testing on a rapid prototyping system using
products such as xPC Target™, Real-Time Windows Target™, or dASPACE®
software. The target compiler and processor may support floating-point
operations in software or in hardware. In any case, the fixed-point portions of
a model generate pure integer code and do not use floating-point operations.
This allows valid bit-true testing even on a floating-point processor.

You can also generate code for non-real-time testing. For example, you can
generate code to run in nonreal time on computers running any supported
operating system. Even though the processors have floating-point hardware,
the code generated by fixed-point blocks is pure integer code. The Generic
Real-Time Target (GRT) in the Simulink Coder product and acceleration
modes in the Simulink software are examples of where non-real-time code
is generated and run.

When used with HDL Coder, Simulink Fixed Point lets you generate bit-true
synthesizable Verilog® and VHDL® code from Simulink models, Stateflow
charts, and MATLAB Function blocks.

Code Generation Support

Code Generation Support

In this section...

“Introduction” on page 11-3
“Languages” on page 11-3

“Data Types” on page 11-3
“Rounding Modes” on page 11-3
“Overflow Handling” on page 11-3
“Blocks” on page 11-4

“Scaling” on page 11-4

Introduction

All fixed-point blocks support code generation, except particular simulation
features. The sections that follow describe the code generation support that
the Simulink Fixed Point software provides. You must have a Simulink Coder
license to generate C code or a HDL Coder license to generate HDL code.

Languages
C code generation is supported.

Data Types

Fixed-point code generation supports all integer and fixed-point data types
that are supported by simulation. See “Supported Data Types” on page 1-18.

Rounding Modes

All rounding modes—Ceiling, Convergent, Floor, Nearest, Round,
Simplest, and Zero —are supported.

Overflow Handling

® Saturation and wrapping are supported.

11-3

11 Code Generation

114

* Wrapping generates the most efficient code.

e Currently, you cannot choose to exclude saturation code automatically
when hardware saturation is available. Select wrapping in order for the
Simulink Coder product to exclude saturation code.

Blocks

All blocks generate code for all operations with a few exceptions. The
Lookup Table Dynamic block generates code for all lookup methods except
Interpolation-Extrapolation.

Scaling
Any binary-point-only scaling and [Slope Bias] scaling that is supported in
simulation is supported, bit-true, in code generation.

Accelerating Fixed-Point Models

Accelerating Fixed-Point Models

If the model meets the code generation restrictions, you can use Simulink
acceleration modes with your fixed-point model. The acceleration modes can
drastically increase the speed of some fixed-point models. This is especially
true for models that execute a very large number of time steps. The time
overhead to generate code for a fixed-point model is generally larger than the
time overhead to set up a model for simulation. As the number of time steps
increases, the relative importance of this overhead decreases.

Note Rapid Accelerator mode does not support models with bus objects or
33+ bit fixed-point data types as parameters.

Every Simulink model is configured to have a start time and a stop time in
the Configuration Parameters dialog box. Simulink simulations are usually
configured for non-real-time execution, which means that the Simulink
software tries to simulate the behavior from the specified start time to the
stop time as quickly as possible. The time it takes to complete a simulation
consists of two parts: overhead time and core simulation time, which is spent
calculating changes from one time step to the next. For any model, the time
it takes to simulate if the stop time is the same as the start time can be
regarded as the overhead time. If the stop time is increased, the simulation
takes longer. This additional time represents the core simulation time. Using
an acceleration mode to simulate a model has an initially larger overhead
time that is spent generating and compiling code. For any model, if the
simulation stop time is sufficiently close to the start time, then Normal mode
simulation is faster than an acceleration mode. But an acceleration mode
can eliminate the overhead of code generation for subsequent simulations if
structural changes to the model have not occurred.

In Normal mode, the Simulink software runs general code that can handle
various situations. In an acceleration mode, code is generated that is tailored
to the current usage. For fixed-point use, the tailored code is much leaner
than the simulation code and executes much faster. The tailored code allows
an acceleration mode to be much faster in the core simulation time. For any
model, when the stop time is close to the start time, overhead dominates the
overall simulation time. As the stop time is increased, there is a point at
which the core simulation time dominates overall simulation time. Normal

11-5

11 Code Generation

11-6

mode has less overhead compared to an acceleration mode when fresh

code generation is necessary. Acceleration modes are faster in the core
simulation portion. For any model, there is a stop time for which Normal
mode and acceleration mode with fresh code generation have the same overall
simulation time. If the stop time is decreased, then Normal mode is faster. If
the stop time is increased, then an acceleration mode has an increasing speed
advantage. Eventually, the acceleration mode speed advantage is drastic.

Normal mode generally uses more tailored code for floating-point calculations
compared to fixed-point calculations. Normal mode is therefore generally
much faster for floating-point models than for similar fixed-point models.
For acceleration modes, the situation often reverses and fixed point becomes
significantly faster than floating point. As noted above, the fixed-point code
goes from being general to highly tailored and efficient. Depending on the
hardware, the integer-based fixed-point code can gain speed advantages over
similar floating-point code. Many processors can do integer calculations much
faster than similar floating-point operations. In addition, if the data bus is
narrow, there can also be speed advantages to moving around 1-, 2-, or 4-byte
integer signals compared to 4- or 8-byte floating-point signals.

Using External Mode or Rapid Simulation Target

Using External Mode or Rapid Simulation Target

In this section...

“Introduction” on page 11-7
“External Mode” on page 11-7
“Rapid Simulation Target” on page 11-8

Introduction

If you are using the Simulink Coder external mode or rapid simulation
(rsim) target, there are situations where you might get unexpected errors
when tuning block parameters. These errors can arise when you specify the
Best precision scaling option for blocks that support constant scaling for
best precision. See “Constant Scaling for Best Precision” on page 2-13 for a
description of the constant scaling feature.

The sections that follow provide further details about the errors you might
encounter. To avoid these errors, specify a scaling value instead of using
the Best precision scaling option.

External Mode

If you change a parameter such that the binary point moves during an
external mode simulation or during graphical editing, and you reconnect to
the target, a checksum error occurs and you must rebuild the code. When you
use Best Precision scaling, the binary point is automatically placed based
on the value of a parameter. Each power of two roughly marks the boundary
where a parameter value maps to a different binary point. For example, a
parameter value of 1 to 2 maps to a particular binary point position. If you
change the parameter to a value of 2 to 4, the binary point moves one place to
the right, while if you change the parameter to a value of 0.5 to 1, it moves
one place to the left.

For example, suppose a block has a parameter value of -2. You then build
the code and connect in external mode. While connected, you change the
parameter to -4. If the simulation is stopped and then restarted, this
parameter change causes a binary point change. In external mode, the binary
point is kept fixed. If you keep the parameter value of -4 and disconnect

11-7

11 Code Generation

11-8

from the target, then when you reconnect, a checksum error occurs and you
must rebuild the code.

Rapid Simulation Target

If a parameter change is great enough, and you are using the best precision
mode for constant scaling, then you cannot use the rsim target.

If you change a block parameter by a sufficient amount (approximately a
factor of two), the best precision mode changes the location of the binary
point. Any change in the binary point location requires the code to be rebuilt
because the model checksum is changed. This means that if best precision
parameters are changed over a great enough range, you cannot use the rapid
simulation target and a checksum error message occurs when you initialize
the rsim executable.

Optimize Your Generated Code

Optimize Your Generated Code

In this section...

“Tips for Reducing ROM Consumption or Model Execution Time” on page
11-10

“Restrict Data Type Word Lengths” on page 11-10

“Avoid Fixed-Point Scalings with Bias” on page 11-11

“Wrap and Round to Floor or Simplest” on page 11-11

“Limit the Use of Custom Storage Classes” on page 11-13

“Limit the Use of Unevenly Spaced Lookup Tables” on page 11-13

“Minimize the Variety of Similar Fixed-Point Utility Functions” on page
11-13

“Handle Net Slope Correction” on page 11-14
“Use Integer Division to Handle Net Slope Correction” on page 11-15

“Use Integer Division to Handle Net Slope to Improve Numerical Accuracy
of Simulation Results” on page 11-16

“Use Integer Division to Handle Net Slope to Improve Efficiency of
Generated Code” on page 11-21

“Optimize Generated Code Using Specified Minimum and Maximum
Values” on page 11-27

“Use Specified Minimum and Maximum Values to Eliminate Unnecessary
Utility Functions” on page 11-29

11-9

11 Code Generation

Tips for Reducing ROM Consumption or Model
Execution Time

Reduces
Tip Reduces ROM MOd?I
Execution
Time
“Restrict Data Type Word Lengths” on page 11-10 Yes Yes
“Avoid Fixed-Point Scalings with Bias” on page 11-11 Yes Yes
“Wrap and Round to Floor or Simplest” on page 11-11 Yes Yes
“Limit the Use of Custom Storage Classes” on page 11-13 Yes No
Limit the Use of Unevenly Spaced Lookup Tables” on page Yes Yes
11-13
“Minimize the Variety of Similar Fixed-Point Utility
. Yes No
Functions” on page 11-13
Dependent Dependent
on model on model
“Handle Net Slope Correction” on page 11-14 configuration, Egrr;ﬁgﬁle 1;at10n,
compiler, and an dlizar ’et
target hardware g
hardware
“Optimize Generated Code Using Specified Minimum and
. " Yes Yes
Maximum Values” on page 11-27

Restrict Data Type Word Lengths

If possible, restrict the fixed-point data type word lengths in your model
so that they are equal to or less than the integer size of your target
microcontroller. This results in fewer mathematical instructions in the
microcontroller, and reduces ROM and execution time.

This recommendation strongly applies to global variables that consume global

RAM. For example, Unit Delay blocks have discrete states that have the
same word lengths as their input and output signals. These discrete states

11-10

Optimize Your Generated Code

are global variables that consume global RAM, which is a scarce resource
on many embedded systems.

For temporary variables that only occupy a CPU register or stack location
briefly, the space consumed by a long is less critical. However, depending on
the operation, the use of long variables in math operations can be expensive.
Addition and subtraction of long integers generally requires the same effort
as adding and subtracting regular integers, so that operation is not a concern.
In contrast, multiplication and division with long integers can require
significantly larger and slower code.

Avoid Fixed-Point Scalings with Bias

Whenever possible, avoid using fixed-point numbers with bias. In certain
cases, if you choose biases carefully, you can avoid significant increases in
ROM and execution time. Refer to “Recommendations for Arithmetic and
Scaling” on page 3-33 for more information on how to choose appropriate
biases in cases where it is necessary; for example if you are interfacing with a
hardware device that has a built-in bias. In general, however, it is safer to
avoid using fixed-point numbers with bias altogether.

Inputs to lookup tables are an important exception to this recommendation. If
a lookup table input and the associated input data use the same bias, then
there is no penalty associated with nonzero bias for that operation.

Wrap and Round to Floor or Simplest

For most fixed-point and integer operations, the Simulink software provides
you with options on how overflows are handled and how calculations are
rounded. Traditional handwritten code, especially for control applications,
almost always uses the “no effort” rounding mode. For example, to reduce the
precision of a variable, that variable is shifted right. For unsigned integers
and two’s complement signed integers, shifting right is equivalent to rounding
to floor. To get results comparable to or better than what you expect from
traditional handwritten code, you should round to floor in most cases.

The primary exception to this rule is the rounding behavior of signed integer

division. The C language leaves this rounding behavior unspecified, but for
most targets the “no effort” mode is round to zero. For unsigned division,

11-11

11 Code Generation

11-12

everything is nonnegative, so rounding to floor and rounding to zero are
identical.

You can improve code efficiency by setting the value of the Model
Configuration Parameters > Hardware Implementation > Embedded
Hardware > Signed integer division rounds to parameter to describe
how your production target handles rounding for signed division. For Product
blocks that are doing only division, setting the Integer rounding mode
parameter to the rounding mode of your production target gives the best
results. You can also use the Simplest rounding mode on blocks where it

1s available. For more information, refer to “Rounding Mode: Simplest” on
page 3-14.

The options for overflow handling also have a big impact on the efficiency

of your generated code. Using software to detect overflow situations and
saturate the results requires the code to be much bigger and slower compared
to simply ignoring the overflows. When overflows are ignored for unsigned
integers and two’s complement signed integers, the results usually wrap
around modulo 2N, where N is the number of bits. Unhandled overflows that
wrap around are highly undesirable for many situations.

However, because of code size and speed needs, traditional handwritten code
contains very little software saturation. Typically, the fixed-point scaling is
very carefully set so that overflow does not occur in most calculations. The
code for these calculations safely ignores overflow. To get results comparable
to or better than what you would expect from traditional handwritten code,
the Saturate on integer overflow parameter should not be selected for
Simulink blocks doing those calculations.

In a design, there might be a few places where overflow can occur and
saturation protection is needed. Traditional handwritten code includes
software saturation for these few places where it is needed. To get comparable
generated code, the Saturate on integer overflow parameter should only
be selected for the few Simulink blocks that correspond to these at-risk
calculations.

A secondary benefit of using the most efficient options for overflow handling
and rounding is that calculations often reduce from multiple statements
requiring several lines of C code to small expressions that can be folded into
downstream calculations. Expression folding is a code optimization technique

Optimize Your Generated Code

that produces benefits such as minimizing the need to store intermediate
computations in temporary buffers or variables. This can reduce stack size
and make it more likely that calculations can be efficiently handled using only
CPU registers. An automatic code generator can carefully apply expression
folding across parts of a model and often see optimizations that might not be
obvious. Automatic optimizations of this type often allow generated code to
exceed the efficiency of typical examples of handwritten code.

Limit the Use of Custom Storage Classes

In addition to the tip mentioned in “Wrap and Round to Floor or Simplest”
on page 11-11, to obtain the maximum benefits of expression folding you
also need to make sure that the Storage class field in the Signal Properties
dialog box is set to Auto for each signal. When you choose a setting other
than Auto, you need to name the signal, and a separate statement is created
in the generated code. Therefore, only use a setting other than Auto when
it is necessary for global variables.

You can access the Signal Properties dialog box by selecting any connection
between blocks in your model, and then selecting Signal Properties from
the Simulink Edit menu.

Limit the Use of Unevenly Spaced Lookup Tables

If possible, use lookup tables with nontunable, evenly spaced axes. A table
with an unevenly spaced axis requires a search routine and memory for each
input axis, which increases ROM and execution time. However, keep in mind
that an unevenly spaced lookup table might provide greater accuracy. You
need to consider the needs of your algorithm to determine whether you can
forgo some accuracy with an evenly spaced table in order to reduce ROM and
execution time. Also note that this decision applies only to lookup tables with
nontunable input axes, because tables with tunable input axes always have
the potential to be unevenly spaced.

Minimize the Variety of Similar Fixed-Point Utility
Functions

The Embedded Coder product generates fixed-point utility functions that are
designed to handle specific situations efficiently. The Simulink Coder product
can generate multiple versions of these optimized utility functions depending

11-13

11 Code Generation

11-14

on what a specific model requires. For example, the division of long integers
can, in theory, require eight varieties that are combinations of the output
and the two inputs being signed or unsigned. A model that uses all these
combinations can generate utility functions for all these combinations.

In some cases, it is possible to make small adjustments to a model that reduce
the variety of required utility functions. For example, suppose that across
most of a model signed data types are used, but in a small part of a model, a
local decision to use unsigned data types is made. If it is possible to switch
that portion of the model to use signed data types, then the overall variety of
generated utility functions can potentially be reduced.

The best way to identify these opportunities is to inspect the generated code.
For each utility function that appears in the generated code, you can search
for all the call sites. If relatively few calls to the function are made, then trace
back from the call site to the Simulink model. By modifying those places in
the Simulink model, it is possible for you to eliminate the few cases that
need a rarely used utility function.

Handle Net Slope Correction

The Simulink Fixed Point software provides an optimization parameter, Use
integer division to handle net slopes that are reciprocals of integers,
that controls how the software handles net slope correction. To learn how

to enable this optimization, see “Use Integer Division to Handle Net Slope
Correction” on page 11-15.

When a change of fixed-point slope is not a power of two, net slope correction
is necessary. Normally, net slope correction is implemented using an integer
multiplication followed by shifts. Under some conditions, an alternate
implementation requires just an integer division by a constant. One of the
conditions is that the net slope can be accurately represented as the reciprocal
of an integer. Under this condition, the division implementation gives more
accurate numerical behavior. Depending on your compiler and embedded
hardware, the division implementation might be more desirable than the
multiplication and shifts implementation. The generated code for the division
implementation might require less ROM or improve model execution time.

Optimize Your Generated Code

When to Use Integer Division to Handle Net Slope Correction
This optimization works if:
¢ The net slope is a reciprocal of an integer.

¢ Division is more efficient than multiplication followed by shifts on the
target hardware.

Note The Simulink Fixed Point software is not aware of the target
hardware. Before selecting this option, verify that division is more efficient
than multiplication followed by shifts on your target hardware.

When Not to Use Integer Division to Handle Net Slope
Correction

This optimization does not work if:

® The software cannot perform the division using the production target long
data type and therefore must use multiword operations.

Using multiword division does not produce code suitable for embedded
targets. Therefore, do not use integer division to handle net slope correction
in models that use multiword operations. If your model contains blocks
that use multiword operations, change the word length of these blocks

to avoid these operations.

® Net slope is a power of 2

Binary-point-only scaling, where the net slope is a power of 2, involves
moving the binary point within the fixed-point word. This scaling mode
already minimizes the number of processor arithmetic operations.

Use Integer Division to Handle Net Slope Correction
To enable this optimization:

1 Select the Optimization > Use integer division to handle net slopes
that are reciprocals of integers configuration parameter.

For more information, see “Use integer division to handle net slopes that
are reciprocals of integers”.

11-15

11 Code Generation

2 On the Hardware Implementation > Embedded Hardware pane, set
the Signed integer division rounds to configuration parameter to Floor
or Zero, as appropriate for your target hardware. The optimization does not
occur if the Signed integer division rounds to parameter is Undefined.

Note You must set this parameter to a value that is appropriate for the
target hardware. Failure to do so might result in division operations that
comply with the definition on the Hardware Implementation pane, but
are inappropriate for the target hardware.

3 Set the Integer rounding mode of the blocks that require net slope
correction (for example, Product, Gain, and Data Type Conversion) to
Simplest or match the rounding mode of your target hardware.

Note You can use the Model Advisor to alert you if you have not configured
your model correctly for this optimization. Open the Model Advisor and
run the Identify questionable fixed-point operations check. For more
information, see “Optimize Net Slope Correction” on page 11-43.

Use Integer Division to Handle Net Slope to Improve
Numerical Accuracy of Simulation Results

This example illustrates how selecting the Use integer division to handle
net slopes that are reciprocals of integers optimization parameter
improves numerical accuracy. It uses the following model.

11-16

Optimize Your Generated Code

4 ecnet_slopel (=8 o=
File Edit View Display Diagram Simulation Analysis Code Tools Help
] =] =] el f bk
B-E e BE-EEOD @ » @ -
ex_net_slopel
® ||Pa|ecnet_slopel hd
(]
E3
—
= :
Constant Vb Dis play
.
» * —(1)
W
Ve Froduct = Out1
Rounding = Simplest
Censtant1
»
Ready 100% FixedStepDiscrete

For the Product block in this model,

V,=VyxV,

These values are represented by the general [Slope Bias] encoding scheme

described in “Scaling” on page 2-5:V; = S;Q; + B; .

Because there is no bias for the inputs or outputs:

SaQa = Sbe‘Sch , Or

S,S

Q, = s,

£ 'Qch

where the net slope is:

11-17

11 Code Generation

11-18

SbSc
S,

a

The net slope for the Product block is 1/1000. Because the net slope is the
reciprocal of an integer, you can use the Use integer division to handle
net slopes that are reciprocals of integers optimization parameter if your
model and hardware configuration are suitable. For more information, see
“When to Use Integer Division to Handle Net Slope Correction” on page 11-15.

To set up the model and run the simulation:

1 For the two Constant blocks, set the OQutput data type to fixdt(1, 16,
1/1000, 0).

2 For the Product block, set the Output data type to fixdt(1, 16,
1/1000, 0). Set the Integer rounding mode to Simplest.

3 Set the Hardware Implementation > Embedded Hardware >
Signed integer division rounds to configuration parameter to Zero.

4 Clear the Optimization > Use integer division to handle net slopes
that are reciprocals of integers configuration parameter.

5 In your Simulink model window, select Simulation > Run.

Optimize Your Generated Code

¥ e net slopel [o|lo /=)
File Edit View Display Diagram Simulation Analysis Code Tools Help
] 7| = (i I i
- = RO M=IRYCN 2 &~ » @y~
ex_net_slopel
® |[*&ex_net_slopel hd
S}
3 . <fix1B_SpoD1 299
= .
Constant Vb Display
L =il 6_Spl01
e
Ve Prodoct Cut1
sfidf_Sp0Di
Rounding = Simplest
Constant1
»
Ready 100% T=0.000 FixedStepDiscrete

Because the simulation uses multiplication followed by shifts to handle
the net slope correction, net slope precision loss occurs. This precision
loss results in numerical inaccuracy: the calculated product is 3.999, not
4, as you expect.

Note You can set up the Simulink Fixed Point software to provide alerts
when precision loss occurs in fixed-point constants. For more information,
see “Net Slope and Net Bias Precision” on page 3-21.

6 Select the Optimization > Use integer division to handle net slopes
that are reciprocals of integers configuration parameter, save your
model, and simulate again.

The software implements the net slope correction using division instead of

multiplication followed by shifts. The calculated product is 4, as you expect.

11-19

11 Code Generation

'Pi ex_net_slopel _opt_on

-8 2

| ex_net_slopel_opt_on |

File Edit View Display Diagram Simulation Analysis Code

HE- " e

o]l =]

Tools Help

»JV%v

® |[*& ex_net_slopel_opt_en A
(O]
o s —
2 »
= -
Constant Vb Display
> £16_Sp001
o * e (1)
- Wi
Ve Proondt : Outt
sid6_Sp00i
2 Rounding = Simplest
Constant
»
Ready 100% T=0.000 FixedStepDiscrete

The optimization works for this model because:

® The net slope is a reciprocal of an integer.

¢ The Hardware Implementation > Embedded Hardware > Signed
integer division rounds to configuration parameter is set to Zero.

Note This setting must match your target hardware rounding mode.

¢ The Integer rounding mode of the Product block in the model is set

to Simplest.

® The model does not use multiword operations.

11-20

Optimize Your Generated Code

Use Integer Division to Handle Net Slope to Improve
Efficiency of Generated Code

This example illustrates how selecting the Use integer division to handle
net slope correction optimization parameter improves the efficiency of
generated code.

Note The generated code is more efficient only if division is more efficient
than multiplication followed by shifts on your target hardware.

This example uses the following model.

11-21

11 Code Generation

11-22

”ﬁ ex_net_slopel
File Edit

-8 &
ex_net_slope?

View Display Diagram

Simulation

Analysis

e TP

=N Hoh =

Code Tools Help

»@vﬁv

(] a_net_slopd -
&
E3
int18 <ol 51000
=+ (1 }I | Convert =
U N
Crata Type Conversion °
Reounding = Simplest
)] =foci 651000
nt16 v — .
(Z) y X »(2)
v Product m
Reounding = Simplest
by
Ready 100% T=0.000 FixedStepDiscrete

V,=VyxV,

SaQa = Sbe'Sch , Or

For the Product block in this model,

described in “Scaling” on page 2-5:V; = S;@; + B;.

Because there is no bias for the inputs or outputs:

These values are represented by the general [Slope Bias] encoding scheme

Optimize Your Generated Code

S; S
Q, =—27¢.Q,Q.
Sa

where the net slope is:

SbSc

S,

a

The net slope for the Product block is 1/1000.

Similarly, for the Data Type Conversion block in this model,
SaQa + Ba = Sbe + Bb
Sp

There is no bias. Therefore, the net slope is S, . The net slope for this block
is also 1/1000.

Because the net slope is the reciprocal of an integer, you can use the Use
integer division to handle net slopes that are reciprocals of integers
optimization parameter if your model and hardware configuration are
suitable. For more information, see “When to Use Integer Division to Handle
Net Slope Correction” on page 11-15.

To set up the model and generate code:

1 For the two Inport blocks, U and V, set the Data type to int16.

2 For the Data Type Conversion block, set the Integer rounding mode to
Simplest. Set the Output data type to fixdt(1, 16, 1000, 0).

3 For the Product block, set the Integer rounding mode to Simplest. Set
the Output data type to fixdt(1, 16, 1000, 0).

4 Set the Hardware Implementation > Embedded Hardware >
Signed integer division rounds to configuration parameter to Zero.

5 Clear the Optimization > Use integer division to handle net slopes
that are reciprocals of integers configuration parameter.

11-23

11 Code Generation

6 From the Simulink model menu, select Tools > Code > C/C++ Code >
Build Model.

Conceptually, the net slope correction is 1/1000 or 0.001:

Yc
Ym

0.001 * U;
0.001 * U * V;

The generated code uses multiplication with shifts:

% For the conversion
Yc = (int16_T)U * 16777 >> 24;

% For the multiplication
Ym = (int16_T) ((int16_T)(U * V >> 10) * 16777 >> 14);

The ideal value of the net slope correction is 0.001. In the generated
code, the approximate value of the net slope correction is 16777L >> 24

= 16777/2"24 = 0.000999987125396729. This approximation introduces
numerical inaccuracy. For example, using the same model with constant
inputs produces the following results.

11-24

Optimize Your Generated Code

73 exnet sope3 =) ==
File Edit View Display Diagram Simulation Analysis Code Toels Help
EE = (ol . i

-8 & -8 4 b ® -~ » (D7 v
ex_net_slope3

& |[*&|ex_net_slope3 -
&

3

= I:}‘WW int16 o comert =foel6_S1000 sl 4000

Constant Data Type Conversion Display

Satruation = Off
Rounding = Simplest

Y L » Siixi6_S1000
...m .—. = ives!: 5000

Constart1 Froduct Display
Saturation = Off
Reounding = Simplest
>
Ready 100% T=0.000 FixedStepDiscrete

7 Select the Optimization > Use integer division to handle net slopes
that are reciprocals of integers optimization parameter, update
diagram, and generate code again.

The generated code now uses integer division instead of multiplication
followed by shifts:

% For the conversion

Yc = (int16_T)(U / 1000);

% For the multiplication

Ym = (int16_T)(U * V / 1000);

8 In the generated code, the value of the net slope correction is now the ideal
value of 0.001. Using division, the results are numerically accurate.

11-25

11 Code Generation

11-26

*i ex_net_sloped EI@
File Edit View Display Diagram Simulation Analysis Cede Tools Help
- E & Ee-= 60 P © @
® | |Pa|ex_net_sloped hd
@
EZ
- @imﬂ . Convert =il5_S1000 \deal 4000
Censtant Data Type Comversion Display

Satruation = Off

Rounding = Simplest

9 e =i16_51000
 — e e

Constant1 Product Diplay

Saturation = Off
Rounding = Simplest

»

Ready 100% T=0.000 FixedStepDiscrete

The optimization works for this model because the:
® Net slope is a reciprocal of an integer.

¢ Hardware Implementation > Embedded Hardware > Signed
integer division rounds to configuration parameter is set to Zero.

Note This setting must match your target hardware rounding mode.

¢ For the Product and Data Type Conversion blocks in the model, the
Integer rounding mode is set to Simplest.

e Model does not use multiword operations.

Optimize Your Generated Code

Optimize Generated Code Using Specified Minimum
and Maximum Values

The Simulink Fixed Point software uses representable minimum and
maximum values and constant values to determine if it is possible to optimize
the generated code, for example, by eliminating unnecessary utility functions
and saturation code from the generated code.

This optimization results in:

¢ Reduced ROM and RAM consumption

® Improved execution speed

When you select the Optimize using specified minimum and maximum
values configuration parameter, the software takes into account input
range information, also known as design minimum and maximum, that you
specify for signals and parameters in your model. It uses these minimum and
maximum values to derive range information for downstream signals in the
model and then uses this derived range information to simplify mathematical
operations in the generated code whenever possible.

Prerequisites

The Optimize using specified minimum and maximum values
parameter appears for ERT-based targets only and requires an Embedded
Coder license when generating code.

How to Configure Your Model
To make optimization more likely:

® Provide as much design minimum and maximum information as possible.
Specify minimum and maximum values for signals and parameters in the
model for:

= Inport and Outport blocks
= Block outputs

= Block inputs, for example, for the MATLAB Function and Stateflow
Chart blocks

11-27

11 Code Generation

11-28

= Simulink.Signal objects

Before generating code, test the minimum and maximum values for signals
and parameters. Otherwise, optimization might result in numerical
mismatch with simulation. You can simulate your model with simulation
range checking enabled. If errors or warnings occur, fix these issues before
generating code.

How to Enable Simulation Range Checking

1 In your model, select Simulation > Model Configuration
Parameters to open the Configuration Parameters dialog box.

2 In the Configuration Parameters dialog box, select Diagnostics > Data
Validity.

3 On the Data Validity pane, under Signals, set Simulation range
checking to warning or error.

Use fixed-point data types with binary-point-only (power-of-two) scaling.

Provide design minimum and maximum information upstream of blocks
as close to the inputs of the blocks as possible. If you specify minimum
and maximum values for a block output, these values are most likely
to affect the outputs of the blocks immediately downstream. For more
information, see “Use Specified Minimum and Maximum Values to
Eliminate Unnecessary Utility Functions” on page 11-29.

How to Enable Optimization

In the Configuration Parameters dialog box, set the Code Generation >
System target file to select an Embedded Real-Time (ERT) target (requires
an Embedded Coder license).

Specify design minimum and maximum values for signals and parameters
in your model using the tips in “How to Configure Your Model” on page
11-27.

Select the Optimization > Optimize using specified minimum and
maximum values configuration parameter.

For more information, see “Optimize using the specified minimum and
maximum values”.

Optimize Your Generated Code

Limitations

¢ This optimization does not occur for:
= Multiword operations
= Fixed-point data types with slope and bias scaling
= Addition unless the fraction length is zero

¢ This optimization does not take into account minimum and maximum
values for:

= Merge block inputs. To work around this issue, use a Simulink.Signal
object on the Merge block output and specify the range on this object.

= Bus elements.

= Conditionally-executed subsystem (such as a triggered subsystem) block
outputs that are directly connected to an Outport block.

Outport blocks in conditionally-executed subsystems can have an initial
value specified for use only when the system is not triggered. In this
case, the optimization cannot use the range of the block output because
the range might not cover the initial value of the block.

® There are limitations on precision because you specify the minimum
and maximum values as double-precision values. If the true value of a
minimum or maximum value cannot be represented as a double, ensure
that you round the minimum and maximum values correctly so that they
cover the true design range.

¢ If your model contains multiple instances of a reusable subsystem and
each instance uses input signals with different specified minimum and
maximum values, this optimization might result in different generated code
for each subsystem so code reuse does not occur. Without this optimization,
the Simulink Coder software generates code once for the subsystem and
shares this code among the multiple instances of the subsystem.

Use Specified Minimum and Maximum Values to
Eliminate Unnecessary Utility Functions

This example shows how the Simulink Fixed Point software uses the
input range for a division operation to determine whether it can eliminate

11-29

11 Code Generation

11-30

unnecessary utility functions from the generated code. It uses the
fxpdemo_min_max_optimization model. First, you generate code without
using the specified minimum and maximum values to see that the generated
code contains utility functions to ensure that division by zero does not occur.
You then turn on the optimization, and generate code again. With the
optimization, the generated code does not contain the utility function because
1t 1s not necessary for the input range.

Generate Code Without Using Minimum and Maximum Values

First, generate code without taking into account the design minimum and
maximum values for the first input of the division operation to show the code
without the optimization. In this case, the software uses the representable
ranges for the two inputs, which are both uint16. With these input ranges, it
1s not possible to implement the division with the specified precision using
shifts, so the generated code includes a division utility function.

1 Run the example. At the MATLAB command line, enter:

fxpdemo_min_max_optimization

2 In the example window, double-click the View Optimization
Configuration button.

The Optimization pane of the Configuration Parameters dialog box appears.

Note that the Optimize using specified minimum and maximum
values parameter is not selected.

3 Double-click the Generate Code button.
The code generation report appears.

4 In the model, right-click the Division with increased fraction length
output type block.

The context menu appears.
5 From the context menu, select C/C++ Code > Navigate To C/C++ Code.

The code generation report highlights the code generated for this block.
The generated code includes a call to the div_repeat_u32 utility function.

Optimize Your Generated Code

rtY.Out3 = div_repeat_u32((uint32_T)rtU.In5 << 16,
(uint32_T)rtu.In6, 1U);

6 Click the div_repeat u32 link to view the utility function, which contains
code for handling division by zero.

Generate Code Using Minimum and Maximum Values

Next, generate code for the same division operation, this time taking into
account the design minimum and maximum values for the first input of the
Product block. These minimum and maximum values are specified on the
Inport block directly upstream of the Product block. With these input ranges,
the generated code implements the division by simply using a shift. It does
not need to generate a division utility function, reducing both memory usage
and execution time.

1 Double-click the Inport block labelled 5 to open the block parameters dialog
box.

2 On the block parameters dialog box, select the Signal Attributes pane
and note that:

¢ The Minimum value for this signal is 1.

¢ The Maximum value for this signal is 100.
3 Click OK to close the dialog box.
4 Double-click the View Optimization Configuration button.
The Optimization pane of the Configuration Parameters dialog box appears.

5 On this pane, select the Optimize using specified minimum and
maximum values parameter and click Apply.

6 Double-click the Generate Code button.
The code generation report appears.

7 In the model, right-click the Division with increased fraction length
output type block.

The context menu appears.

11-31

11 Code Generation

11-32

8 From the context menu, select C/C++ Code > Navigate To C/C++ Code.

The code generation report highlights the code generated for this block.
This time the generated code implements the division with a shift operation
and there is no division utility function.

tmp = rtuU.In6;
rtY.out3 = (uint32_T)tmp ==
(uint32_T)0 ? MAX_ uint32_T : ((uint32_T)rtU.In5 << 17) /
(uint32_T)tmp;

Modify the Specified Minimum and Maximum Values

Finally, modify the minimum and maximum values for the first input to the
division operation so that its input range is too large to guarantee that the
value does not overflow when shifted. Here, you cannot shift a 16-bit number
17 bits to the right without overflowing the 32-bit container. Generate code for
the division operation, again taking into account the minimum and maximum
values. With these input ranges, the generated code includes a division utility
function to ensure that no overflow occurs.

1 Double-click the Inport block labelled 5 to open the block parameters dialog
box.

2 On the block parameters dialog box, select the Signal Attributes pane and
set the Maximum value to 40000, then click OK to close the dialog box.

3 Double-click the Generate Code button.
The code generation report appears.

4 In the model, right-click the Division with increased fraction length
output type block.

The context menu appears.
5 From the context menu, select C/C++ Code > Navigate To C/C++ Code.

The code generation report highlights the code generated for this block.
The generated code includes a call to the div_repeat_32 utility function.

rtY.out3 = div_repeat_u32((uint32_T)rtU.In5 << 16,

Optimize Your Generated Code

(uint32_T)rtu.In6, 1U);

11-33

11 Code Generation

Optimizing Your Generated Code with the Model Advisor

In this section...

“Use Model Advisor to Optimize Generated Code” on page 11-34
“Optimize Lookup Table Data” on page 11-35

“Reduce Cumbersome Multiplications” on page 11-35

“Optimize the Number of Multiply and Divide Operations” on page 11-36
“Reduce Multiplies and Divides with Nonzero Bias” on page 11-37
“Eliminate Mismatched Scaling” on page 11-37

“Minimize Internal Conversion Issues” on page 11-39

“Use the Most Efficient Rounding” on page 11-41

“Optimize Net Slope Correction” on page 11-43

Use Model Advisor to Optimize Generated Code

You can use the Simulink Model Advisor to help you configure your fixed-point
models to achieve a more efficient design and optimize your generated code.
To use the Model Advisor to check your fixed-point models:

1 From the Analysis menu of the model you want to analyze, select Model
Advisor.

2 In the Model Advisor left pane, expand the By Product node and select
Embedded Coder.

3 From the Model Advisor Edit menu, select Select All to enable all
Model Advisor checks associated with the selected node. For fixed-point
code generation, the most important check boxes to select are Identify
questionable fixed-point operations, Identify blocks that generate
expensive saturation and rounding code, and Check the hardware
implementation.

4 Click Run Selected Checks. Any tips for improving the efficiency of your
fixed-point model appear in the Model Advisor window.

11-34

Optimizing Your Generated Code with the Model Advisor

The sections that follow discuss possible messages that might be returned
when you use the Model Advisor check titled Identify questionable
fixed-point operations. The sections explain the messages, discuss their
importance in fixed-point code generation, and offer suggestions for tweaking
your model to optimize the code.

Optimize Lookup Table Data

Efficiency trade-offs related to lookup table data are described in “Effects
of Spacing on Speed, Error, and Memory Usage” on page 8-22. Based on
these trade-offs, the Model Advisor identifies blocks where there is potential
for efficiency improvements. Messages like the following are shown in the
browser to alert you to these cases:

® Lookup table input data is not evenly spaced. An evenly spaced table might
be more efficient. See fixpt look1 func_approx.

® The lookup table input data is not evenly spaced when quantized, but it
1s very close to being evenly spaced. If the data is not tunable, then it i1s
strongly recommended that you consider adjusting the table to be evenly
spaced. See fixpt_evenspace_cleanup.

® Lookup table input data is evenly spaced, but the spacing is not
a power of two. A simplified implementation could result if the
table could be reimplemented with even power-of-two spacing. See
fixpt_look1_func_approx.

Reduce Cumbersome Multiplications

“Targeting an Embedded Processor” on page 4-4 discusses the capabilities and
limitations of embedded processors. “Design Rules” on page 4-5 recommends
that inputs to a multiply operation should not have word lengths larger than
the base integer type of your processor. Multiplication with larger word
lengths can always be handled in software, but that approach requires much
more code and is much slower. The Model Advisor identifies blocks where
undesirable software multiplications are required. Visual inspection of the
generated code, including the generated multiplication utility function, will
make the cost of these operations clear. It is strongly recommended that you
adjust the model to avoid these operations. Messages like the following are
shown in the browser to alert you to this situation:

11-35

11 Code Generation

11-36

® A very cumbersome multiplication is required by this block. The first input
has 8 bits. The second input has 32 bits. The ideal product has 40 bits. The
largest integer size for the target has only 32 bits. Saturation is ON, so it 1s
necessary to determine all 40 bits of the ideal product in the C code. The C
code required to do this multiplication is large and slow. For this target,
restricting multiplications to 16 bits times 16 bits is strongly recommended.

® A very cumbersome multiplication is required by this block. The first input
has 8 bits. The second input has 32 bits. The ideal product has 40 bits. The
largest integer size for the target has only 32 bits. The relative scaling of
the inputs and the output requires that some of the 8 most significant
bits of the ideal product be determined in the C code. The C code required
to do this multiplication is large and slow. For this target, restricting
multiplications to 16 bits times 16 bits is strongly recommended.

Optimize the Number of Multiply and Divide
Operations

The number of multiplications and divisions that a block performs can have a
big impact on accuracy and efficiency. The Model Advisor detects some, but
not all, situations where rearranging the operations can improve accuracy,
efficiency, or both.

One such situation is when a calculation using more than one division
operation is computed. A browser message will identify Product blocks that
are doing multiple divisions. Note that multiple divisions spread over a series
of blocks are not detected by Model Advisor:

¢ This Product block is configured to do more than one division operation.
A general guideline from the field of numerical analysis is to multiply all
the denominator terms together first, then do one and only one division.
This improves accuracy and often speed in floating-point and especially
fixed-point. This can be accomplished in Simulink by cascading Product
blocks.

Another situation is when a single Product block is configured to do more
than one multiplication or division operation. A browser message will identify
Product blocks doing multiple operations:

¢ This Product block is configured to do more than one multiplication or
division operation. This is supported, but if the output data type is

Optimizing Your Generated Code with the Model Advisor

integer or fixed-point, then better result are likely if this operation is split
across several blocks each doing one multiplication or one division. Using
several blocks allows the user to control the data type and scaling used
for intermediate calculations. The choice of data types for intermediate
calculations affects precision, range errors, and efficiency.

Reduce Multiplies and Divides with Nonzero Bias

“Rules for Arithmetic Operations” on page 3-49 discusses the implementation
details of fixed-point multiplication and division. That section shows the
significant increase in complexity that occurs when signals with nonzero
biases are involved in multiplication and division. The Model Advisor puts a
message in the browser that identifies blocks that require these complicated
operations. It is strongly recommended that you make changes to eliminate
the need for these complicated operations:

¢ This block is multiplying signals with nonzero bias. It is recommended that
this be avoided when possible. Extra steps are required to implement the
multiplication (if possible). Inserting a Data Type Conversion block before
and after the block doing the multiplication allows the biases to be removed
and allows the user to control data type and scaling for intermediate
calculations. In many cases the Data Type Conversion blocks can be move
to the “edges” of a (sub)system. The conversion is only done once and all
blocks can benefit from simpler bias-free math.

Eliminate Mismatched Scaling

Scaling adjustment is an extremely common operation in fixed-point designs.
In the vast majority of cases, shifts left or shifts right are sufficient to handle
the scaling adjustment. This occurs when the slope adjustment is an exact
power of two, and the bias adjustment term is zero. Situations where shifts
are not sufficient to handle scaling adjustments are called mismatched
scaling. Cases of mismatched scaling can involve either mismatched slopes
or mismatched biases.

For mismatched slopes, it is necessary to multiply by an integer correction
term in addition to shifting. The need for this extra multiplication often
represents a design oversight. The extra multiplication requires extra code,
slows down the speed of execution, and usually introduces additional precision
loss. By adjusting the scaling of the inputs or outputs, you can eliminate
mismatched slopes. The most efficient designs minimize the number of places

11-37

11 Code Generation

11-38

where mismatched slopes occur. The need to handle mismatched slopes can
occur in many Simulink blocks, including Product, Sum, Relational Operator,
and MinMax. A browser message will identify these blocks. The Data Type
Conversion block can also face mismatched slopes, but it is assumed that this
explicit conversion is intentional, so no Model Advisor messages are issued:

® This block is multiplying signals with mismatched slope adjustment
terms. The first input has slope adjustment 1.01. The second input has
slope adjustment 1. The output has slope adjustment 1. The net slope
adjustment is 1.01. This mismatch causes the overall operation to involve
two multiply instructions rather than just one as expected. The mismatch
can be removed by changing the data type of the output.

® This Sum block has a mismatched slope adjustment term between an input
and the output. The input has slope adjustment 1.5. The output has slope
adjustment 1. The net slope adjustment is 1.5. This mismatch causes the
Sum block to require a multiply operation each time the input is converted
to the outputs data type and scaling. The mismatch can be removed by
changing the scaling of the output or the input.

e This MinMax block has mismatched slope adjustment terms between an
input and the output. The input has slope adjustment 1.125. The output
has slope adjustment 1. The net slope adjustment is 1.125. This mismatch
causes the MinMax block to require a multiply operation each time the
input is converted to the data type and scaling of the output. The mismatch
can be removed by changing the scaling of either the input or output.

® This Relational Operator block has mismatched slope adjustment terms
between the first and second input. The first input has slope adjustment 1.
The second input has slope adjustment 1.125. The net slope adjustment
1s 1.125. This mismatch causes the relational operator block to require a
multiply operation each time the nondominant input is converted to the
data type and scaling of the dominant input. The mismatch can be removed
by changing the scaling of either of the inputs.

For mismatched bias, it is usually necessary to add or subtract an integer
correction term as a separate step in addition to the normal shifting. Like
slope mismatch, the need to do this extra addition often represents a design
oversight. Except for the Data Type Conversion block, Model Advisor assumes
mismatched bias is an oversight. A message such as the following appears

Optimizing Your Generated Code with the Model Advisor

in the browser, identifying blocks that could be made more efficient by
eliminating mismatched biases:

e For this Sum block, the addition and subtraction of the input biases do not
cancel with the output bias. The implementation will include one extra
addition or subtraction instruction to correctly account for the net bias
adjustment. Changing the bias of the output scaling can make the net bias
adjustment zero and eliminate the need for the extra operation.

Minimize Internal Conversion Issues

Many fixed-point operations need to do internal data type and scaling
conversions. Fixed-point operations are based upon lower-level operations,
such as integer addition and integer comparisons, that require the arguments
to have the same data type and scaling. This is why blocks built on these
operations, such as Sum, Relational Operator, and MinMax, must do internal
conversions. There can be issues related to these internal conversions, such
as range errors, that lead to overflows and loss of efficiency. Model Advisor
warns separately about these two issues with messages like the following:

® For this Relational Operator block, the first input has the greater positive
range. The second input is converted to the data type and scaling of the
first input prior to performing the relational operation. The first input
has range 0 to 255.996 but the second input has range -4 to 3.96875 so a
range error can occur when casting.

¢ For this MinMax block, an input is converted to the data type and scaling
of the output prior to performing the relational operation. The input has
range 0 to 255.996 but the output has range -256 to 255.992, so a range
error can occur when casting.

¢ For this Relational Operator block, the second input has the greater
positive range. The first input is converted to the data type and scaling of
the second input prior to performing the relational operation. The first
input has range -4 to 3.96875 but the second input has range 0 to 255.996,
S0 a range error can occur when casting.

® The Sum block can have a range error prior to the addition or subtraction
operation being performed. For simplicity of design, the sum block always
casts each input to the output’s data type and scaling prior to performing
the addition or subtraction. One of the inputs has range -128 to 127.996
but the output has range -32 to 31.999 so a range error can occur when

11-39

11 Code Generation

11-40

casting the input to the outputs data type. Users can get any addition
subtraction their application requires by inserting data type conversion
blocks before and/or after the sum block. For example, suppose the inputs
were a combination of signed and unsigned 8 bits with binary points that
differed by at most 5 places. The output of the sum block could be set to
signed 16 bit with scaling that matched the most precise input. When the
inputs were cast to the outputs data type there would be no loss of range
or precision. A conversion block after the sum block would allow the final
result to be put in whatever data type was desired.

® The Sum block can have a range error prior to the addition or subtraction
operation being performed. For simplicity of design, the sum block always
casts each input to the output’s data type and scaling prior to performing
the addition or subtraction. Note, for better accuracy and efficiency,
nonzero bias terms are handled separately and are not included in the
conversion from input to output. The ranges given below for the input and
output exclude their biases. One of the inputs has range -4 to 3.96875
but the output has range 0 to 63.999 so a range error can occur when
casting the input to the outputs data type. Users can get any addition
subtraction their application requires by inserting data type conversion
blocks before and/or after the sum block. For example, suppose the inputs
were a combination of signed and unsigned 8 bits with binary points that
differed by at most 5 places. The output of the sum block could be set to
signed 16 bit with scaling that matched the most precise input. When the
inputs were cast to the outputs data type there would be no loss of range
or precision. A conversion block after the sum block would allow the final
result to be put in whatever data type was desired.

For some operations, the need to do an internal conversion can represent

a design oversight. The impact of this oversight is a loss of efficiency, and
possibly a loss of accuracy. As an example, consider the comparison of a
signal against a constant using a Relational Operator block. To compare a
fixed-point signal against a constant, the underlying implementation should
directly compare the stored integer of the input signal against an invariant
stored integer. If the scaling or data type of the signal and constant are
different, then it is also necessary to do a conversion operation. This extra
conversion work is usually inefficient and is often unexpected. The Model
Advisor warns about these situations with messages like the following:

Optimizing Your Generated Code with the Model Advisor

¢ For this MinMax block, an input is converted to the data type and scaling
of the output prior to performing the relational operation. The input has
precision 0.00390625. The output has precision 0.0078125, so there can be
a precision loss each time the conversion is performed.

® For this relational operator block, the data types of the first and second
inputs are not the same. A conversion operation is required every time
the block is executed. If one of the inputs is invariant (sample time color
magenta), then changing the data type and scaling of the invariant input to
match the other input is a good opportunity for improving the efficiency of
your model.

¢ For this MinMax block, the data types of the output and an input are not the
same. A conversion operation is required every time the block is executed.

Use the Most Efficient Rounding

How to Specify Rounding for Fixed-Point Operations

Specify rounding options for fixed-point operations by setting a combination
of these parameters:

¢ Integer rounding mode

Use the Integer rounding mode parameter on your model’s blocks to
simulate the rounding behavior of the C compiler that you use to compile
code generated from the model. This setting appears on the Signal
Attributes pane of the parameter dialog boxes of blocks that can perform
signed integer arithmetic, such as the Product block.

* Signed integer division rounds to parameter

This parameter is available from Simulation > Model Configuration
Parameters > Hardware Implementation > Embedded Hardware.
It describes how to produce a signed integer quotient for the production
hardware. For most blocks, the value of Integer rounding mode
completely defines rounding behavior. For blocks that support fixed-point
data and the Simplest rounding mode, the value of Signed integer
division rounds to also affects rounding. For details, see Simplest
rounding.

11-41

11 Code Generation

11-42

How to Choose the Most Efficient Rounding

Traditional handwritten code, especially for control applications, almost
always uses “no effort” rounding. For example, for unsigned integers and
two’s complement signed integers, shifting right and dropping the bits is
equivalent to rounding to floor. To get results comparable to, or better than,
what you expect from traditional handwritten code, use the simplest rounding
mode. In general the simplest mode provides the minimum cost solution with
no overflows. If the simplest mode is not available, round to floor.

The primary exception to this rule is the rounding behavior of signed integer
division. The C standard leaves this rounding behavior unspecified, but for
most production targets the “no effort” mode is to round to zero. For unsigned
division, everything is nonnegative, so rounding to floor and rounding to zero
are identical. To improve rounding efficiency, set Model Configuration
Parameters > Hardware Implementation > Embedded Hardware >
Signed integer division rounds to using the mode that your production
target uses.

For more information on properties to consider when choosing a rounding
mode, see “Choosing a Rounding Method”.

Model Advisor Rounding Mode Checks

Use the Model Advisor to alert you when rounding optimizations are available.

1 From the Analysis menu of the model you want to analyze, select Model
Advisor.

2 In the Model Advisor left pane, expand the By Product node and select
Embedded Coder.

3 Select Identify blocks that generate expensive saturation and
rounding code.

4 Click Run Selected Checks. Any tips for improving the rounding
efficiency of your fixed-point model appear in the Model Advisor window.

The Model Advisor alerts you when rounding optimizations are available.

Optimizing Your Generated Code with the Model Advisor

® To obtain the most efficient generated code, change the Integer rounding
mode parameter of the following block to Simplest or to Floor if Simplest
is not available.

¢ Integer division generated code could be more efficient. C language
standards do not fully specify the rounding behavior of signed integer
division. When faced with this lack of specification, the code generated for
division can be large to ensure bit-true agreement between simulation
and code generation.

Model Configuration Parameters > Hardware Implementation >
Embedded Hardware > Signed integer division rounds to allows
you to describe the rounding behavior of signed integer division for your
production target. The rounding behavior for this model is currently set to
Undefined. You can reduce the size of the code generated for division by
setting this parameter. The most common behavior is that signed integer
division rounds to zero.

Optimize Net Slope Correction

When a change of fixed-point slope is not a power of two, net slope correction
is necessary. Normally, net slope correction is implemented using an integer
multiplication followed by shifts. Under some conditions, an alternate
implementation requires just an integer division by a constant. One of

the conditions is that the net slope can be very accurately represented

as the reciprocal of an integer. When this condition is met, the division
implementation produces more accurate numerical behavior. Depending on
your compiler and embedded hardware, the division implementation might
be more desirable than the multiplication and shifts implementation. The
generated code might be more efficient in either ROM size or model execution
size.

How the Model Advisor Helps You Optimize Net Slope
Correction
The Model Advisor alerts you when:

® You select the Use integer division to handle net slopes that are

reciprocals of integers optimization parameter, but your model
configuration is not compatible with this selection.

11-43

11 Code Generation

11-44

See “Using the Model Advisor to Verify that Your Model Configuration is
Suitable for Using Integer Division for Net Slope Correction” on page 11-44.

® Your model configuration is suitable for using integer division to handle net
slope correction, but you do not select the Use integer division to handle
net slopes that are reciprocals of integers optimization parameter.

See “Using the Model Advisor to Detect When to Use Integer Division for
Net Slope Correction” on page 11-49.

Using the Model Advisor to Verify that Your Model
Configuration is Suitable for Using Integer Division for Net
Slope Correction

This example uses the following model.

Optimizing Your Generated Code with the Model Advisor

P4 ex_net_slope5 oo s]
File Edit View Display Diagram Simulation Analysis Code Tools Help
] =] el i
@'@ ilﬁ@' d&wl]b =l v E=g T
ex_net_slopes
® ex_net_slope_‘i -
E3
=+ 3 int16 N Comvert =i 51000 3
u A
Data Type Conversion "
Rounding = Floor
. i w |Fesion .
v Froduct ¥m
Rounding = Convergent
»
Ready 100% T=0.000 FixedStepDiscrete

In this model, the net slope for the Data Type Conversion and Product blocks
is 1/1000.

To set up the model:

1 For the two Inport blocks, U and V, set the Data type to int16.

11-45

11 Code Generation

11-46

2 For the Data Type Conversion block, set the Integer rounding mode to
Floor. Set the Output data type to fixdt(1, 33, 1000, 0).

Note Setting the Output data type word length greater than the length
of the long data type results in multiword operations.

3 For the Product block, set the Integer rounding mode to Convergent.
Set the Output data type to fixdt(1, 16, 1000, 0).

4 Set the Hardware Implementation > Embedded Hardware >
Signed integer division rounds to configuration parameter to Zero.

5 Select the Optimization > Use integer division to handle net slopes
that are reciprocals of integers configuration parameter.

6 Save the model.
To run the Model Advisor check:

1 From the model menu, select Analysis > Model Advisor.

2 In the Model Advisor left pane, expand the By Product node and then
expand the Embedded Coder node.

3 Select Identify questionable fixed-point operations.
4 Click Run This Check.

The Model Advisor provides warnings that your model configuration is
not compatible with the use of division for net slope correction. It also
provides recommendations on how to change your model configuration to
make it compatible:

® The Product block is not using the correct rounding mode.
Change the Integer rounding mode parameter to Simplest
or to match the configuration parameter setting, Hardware
Implementation > Embedded Hardware > Signed integer
division rounds to.

Optimizing Your Generated Code with the Model Advisor

® The Data Type Conversion block is not using the correct rounding
mode. Change the Integer rounding mode parameter to Simplest
or to match the configuration parameter setting, Hardware
Implementation > Embedded Hardware > Signed integer
division rounds to.

® The Data Type Conversion block is using multiword operations. Change
the word length of the block to avoid multiword operations.

5 Make the suggested changes:

a For the Product and Data Type Conversion blocks, change the rounding
mode to Simplest.

b For the Data Type Conversion block, change the Output data type
from fixdt(1, 33, 1000, 0) to fixdt(1, 16, 1000, 0) to avoid
multiword operations.

¢ Save the model.

This is your model configuration.

11-47

11 Code Generation

¥ ex net_slopeb =S ECR (5
File Edit View Display Diagram Simulation Analysis Code Tools Help
7] = T iid
- @ = ROM=IRYORN2 » (D v v
ex_net_sloped
® |[Pajex_net_sloped -
@
£
int15 =foclS_S1000
= (1 ;I » Corwert |—————»(1}
u ¥
Data Type Conversion ¢
Rounding = Simplest
. > <fx18_S1000
nt15 v =
=" o /(2
v Product ¥m
Rounding = Simplest
»
Ready 100% T=0.000 FixedStepDiscrete

6 Rerun the Model Advisor Identify questionable fixed-point operations
check.

The Model Advisor no longer reports the warnings about rounding mode
and multiword operations. Your model configuration is compatible with
using integer division to handle net slope correction.

11-48

Optimizing Your Generated Code with the Model Advisor

Using the Model Advisor to Detect When to Use Integer
Division for Net Slope Correction
This example uses the following model.

%3 exnet slope oo
File Edit View Display Diagram Simulation Analysis Cede Tools Help
]| = (ol 223
-8 & o2 4o P » DT e T
ex_net_sloped
® || Pa|ex_net_sloped -
G}
E2
=F int 15 sfocdE_S1000
1) » Comwet ———p{ 1)
u Yo
Data Type Conversion
Rounding = Simplest
" > sfecd&_S51000
nt 16 v —
&> L D
W Product Ym
Rounding = Simplest
»
Ready 100% T=0.000 FixedStepDiscrete

In this model, the net slope for the Data Type Conversion and Product blocks
is 1/1000.

11-49

11 Code Generation

11-50

To set up the model:

1 For the two Inport blocks, U and V, set the Data type to int16.

2 For the Data Type Conversion block , set the Integer rounding mode to
Simplest. Set the Output data type to fixdt(1, 16, 1000, 0).

3 For the Product block, set the Integer rounding mode to Simplest. Set
the Output data type to fixdt(1, 16, 1000, 0).

4 Set the Hardware Implementation > Embedded Hardware >
Signed integer division rounds to configuration parameter to Zero.

5 Clear the Optimization > Use integer division to handle net slopes
that are reciprocals of integers configuration parameter.

6 Save the model.
To run the Model Advisor check:

1 From the model menu, select Analysis > Model Advisor.

2 In the Model Advisor left pane, expand the By Product node and then
expand the Embedded Coder node.

3 Select Identify questionable fixed-point operations.
4 Click Run This Check.

The Model Advisor warns that your model configuration is not optimal and
provides the following recommendation:

The Product and Data Type Conversion blocks are not using integer
division for net slope correction. Selecting Optimization > Use integer
division to handle net slopes that are reciprocals of integers might
generate more efficient code.

Note The generated code is more efficient only if division is more efficient
than multiplication followed by shifts on your target hardware.

Optimizing Your Generated Code with the Model Advisor

5 Select the Use integer division to handle net slopes that are
reciprocals of integers optimization parameter.

6 Rerun the Model Advisor Identify questionable fixed-point operations
check.

The Model Advisor no longer reports the warning. Your model now uses
integer division to handle net slope correction. This configuration results in
more efficient code if division is more efficient than multiplication followed
by shifts on your target hardware. For more information, see “Handle

Net Slope Correction” on page 11-14.

11-51

11 Code Generation

11-52

Fixed-Point Advisor
Reference

¢ “Fixed-Point Advisor” on page 12-2
® “Prepare Model for Conversion” on page 12-6
® “Prepare for Data Typing and Scaling” on page 12-21

® “Return to the Fixed-Point Tool to Perform Data Typing and Scaling” on
page 12-35

1 2 Fixed-Point Advisor Reference

Fixed-Point Advisor

1T Ficed-Point Advisor - fipdemo_fpaControfier System STEIE

PR e p— -pn

Fixed-Point Advisor

« 0 Funed-Poum Advisor
O 1. Prepate Madel for Caneiian The Fiuedd Pt Advicr =
U 2. Prepare for Data Typing and Saling

1 Tach 16 Bertoim Clats hping sad Seating

St pavharms the flwng bk
£, Prepae Mod for Corversin
it model wide Configuraton aptons.

The Fonerd Pkl Ackinor pravidien wou with ek on B results of Ba ek 1 the Lash fals, Bhe Fined-Puint Adhiser provides yiuwith
Horr o to mosdy the et e sk Far fo ik pek

Lepend
J Bt Run
9 Fomd
Q rue
& wamng

Group Folder - un in iy aider
[——

Funring s chedk Figgers an Lidace Dagram,
~>33 W o Fakre” i progress.

Regmrt

b - gepert 454 powy

Diate/Time: ot Apphcatie:

Summary: (-] D a0 4y Wamng: 0 L1 Mok R 38

12-2

Fixed-Point Advisor

Fixed-Point Advisor Overview

The Fixed-Point Advisor is a tool you can use to prepare your model for
conversion from an unknown floating-point data type to a known fixed-point
data type. The Fixed-Point Advisor workflow allows you to complete your
first iteration through the conversion process without accepting all the
recommendations. However, before using the Fixed-Point Tool to autoscale
your model using simulation data, you must accept all the recommendations.

Description
Use the Fixed-Point Advisor to:

® Set model-wide configuration options.
e Set block-specific dialog parameters.

¢ Check for unsupported blocks.

Procedures

Automatically Run Tasks. The following steps list how you can
automatically run all tasks within a folder.

1 Click the Run to Failure button. The tasks run in order until a task fails.

2 Fix the failure:
e Manually fix the problem using the Explore Result button, if present.

e Manually fix the problem by modifying the model as instructed in the
Analysis Result box.

¢ Automatically fix the problem using the Modify All button, if available.

3 Continue the run to failure by selecting Run > Continue.

Run Individual Tasks. The following steps list how you can run an
individual task.

1 Specify Input Parameters, if present.

2 Run the task by clicking Run This Task.

12-3

1 2 Fixed-Point Advisor Reference

12-4

3 Review Results. The possible results are:

Pass: Move on to the next task.
Warning: Review results, decide whether to move on or fix.
Fail: Review results, do not move on without fixing.
4 If Status is Warning or Fail, you can:
¢ Manually fix the problem using the Explore Result button, if present.
e Manually fix the problem by modifying the model.
¢ Automatically fix the problem using the Modify All button, if available.

5 Once you have fixed a Warning or Failed task, rerun the task by clicking
Run This Task.

Run to Selected Task. If you know that a particular task causes a failure,
you might want to run all the tasks prior to this task and save a restore point
before continuing the run. For more information about restore points, see
“Save a Restore Point” on page 5-10. To run all tasks up to and including
the currently selected task:

1 Select the last task that you want to run.
2 Right click this task to open the context menu.

3 From the context menu, select Run to Selected Task to run all tasks up
to and including the selected task.

Note If a task before the selected task fails, the Fixed-Point Advisor stops
the run at the failed task.

Rerun a Task. You might want to rerun a task to see if changes you make
result in a different answer. To rerun a task that you have run before:

1 Select the task that you want to rerun.
2 Specify input parameters, if present.

3 Run the task by clicking Run This Task.

Fixed-Point Advisor

The task reruns.

Caution All downstream tasks are reset to Not Run if:
e The task fails.

® You click the Modify All button.

View a Run Summary. To view a complete run summary of Pass, Failed,
Warning, and Not Run tasks:

1 Select the Fixed-Point Advisor folder.

2 Click the path link listed for Report. A report containing a summary of
all tasks is displayed.

See Also

e “Best Practices” on page 5-2
® “Preparation for Fixed-Point Conversion” on page 5-2

® “Converting a Model from Floating- to Fixed-Point Using Simulation Data”
on page 5-14

12-5

1 2 Fixed-Point Advisor Reference

12-6

Prepare Model for Conversion

In this section...

“Prepare Model for Conversion Overview” on page 12-7

“Verify model simulation settings” on page 12-8

“Verify update diagram status” on page 12-9

“Address unsupported blocks” on page 12-10

“Set up signal logging” on page 12-12

“Create simulation reference data” on page 12-13

“Verify Fixed-Point Conversion Guidelines Overview” on page 12-15

“Check model configuration data validity diagnostic parameters settings”
on page 12-16

“Implement logic signals as Boolean data” on page 12-17
“Check for proper bus usage” on page 12-18
“Simulation range checking” on page 12-19

“Check for implicit signal resolution” on page 12-20

Prepare Model for Conversion

Prepare Model for Conversion Overview
This folder contains tasks for configuring and setting up the model for data
logging.

Description
Validate model-wide settings and create simulation reference data for
downstream tasks.

See Also

e “Preparation for Fixed-Point Conversion” on page 5-2

e “Converting a Model from Floating- to Fixed-Point Using Simulation Data”
on page 5-14

12-7

1 2 Fixed-Point Advisor Reference

12-8

Verify model simulation settings

Validate that model simulation settings allow signal logging and disable data
type override to facilitate conversion to fixed point. Logged signals are used
for analysis and comparison in later tasks.

Description
Ensures that fixed-point data can be logged in downstream tasks.

Results and Recommended Actions

Conditions Recommended Action

The following Fixed-Point Tool Set Data type override to Use
setting is not set to the correct value: local settings
* Data type override

The Model Configuration Set to on
Parameters Data Import/Export >
Signal logging check box is off.

The fipref DataTypeOverride Set DataTypeOverride to Off
property is not set to Off.

Action Results

Clicking Modify All configures the model for recommended simulation
settings and fipref objects. A table displays the current and previous block
settings.

See Also

® “Data Type Override” on page 9-48
® “Signal logging”
e “Data Type Override Preferences Using fipref”

Prepare Model for Conversion

Verify update diagram status

Verify update diagram succeeds.

Description
A model update diagram action is necessary for most down stream tasks.

Results and Recommended Actions

Conditions Recommended Action

The model diagram does not update. Fix the model. Make sure needed
mat files are loaded.

See Also
“Update a Block Diagram” in the Simulink documentation

12-9

1 2 Fixed-Point Advisor Reference

12-10

Address unsupported blocks

Identify blocks that do not support fixed-point data types.

Description

Blocks that do not support fixed-point data types cannot be converted.

Results and Recommended Actions

Conditions

Blocks that do not support
fixed-point data types and cannot be
converted exist in model.

Recommended Action
® Replace the block with the block

specified in the Result pane
by right-clicking the block and
selecting the replacement from
the context menu.

Note The Fixed-Point Advisor
provides a preview of the
replacement block. To view

the replacement and verify its
settings, click the Preview link. If
the settings on the replacement
block differ from the settings

on the original block, set up the
replacement block to match the
original block.

Isolate the block by right-clicking
the block and selecting Insert
Data Type Conversion > All
Ports.

Prepare Model for Conversion

Tips

® Before inserting a replacement block, use the Preview link to view the
replacement block. If necessary, update the settings on the replacement
block to match the settings on the original block.

e [f the Fixed-Point Advisor does not recommend a corresponding fixed-point
block, replace the unsupported block with a number of lower-level blocks
to provide the same functionality.

® The goal is to replace all blocks that do not support fixed-point data types.
Using Data Type Conversion blocks to isolate blocks at this stage enables
you to continue running through the conversion process. However, this
will cause the Summarize data type task to fail downstream. To fix
this failure, you must replace the block that does not support fixed-point
data types.

See Also

The Simulink Block Data Type Support table summarizes characteristics of
blocks in the Simulink and Simulink Fixed Point block libraries, including
whether or not they support fixed-point data types. To view this table, enter
the following command at the MATLAB command line:

showblockdatatypetable

12-11

1 2 Fixed-Point Advisor Reference

12-12

Set up signal logging

Specify at least one signal of interest to log during simulation. Logged signals
are used for analysis and comparison in other tasks. Suggested signals to
log are model inports and outports.

Description
The Fixed-Point Advisor uses logged signals to compare the initial data type
to the fixed-point data type.

Analysis Result and Recommended Actions

Conditions Recommended Action

No signals are logged. If you are using simulation minimum
and maximum values, specify at
least one signal to be logged.
Otherwise, ignore this warning.

Tips

Log inports and outports of the system under conversion.

Prepare Model for Conversion

Create simulation reference data

Simulate the model using the current solver settings, and create reference
data to use for comparison and analysis. If necessary, you can stop

the simulation by selecting the waitbar and then pressing Ctrl+C. To

set Fixed-point instrumentation mode to Minimums, maximums and
overflows, click the Modify All button.

Description

Simulate the model using the current solver settings, create and archive
reference signal data to use for comparison and analysis in downstream tasks.

Input Parameters

Merge instrumentation results from multiple simulations
Merges new simulation minimum and maximum results with existing
simulation results in the active run. Allows you to collect complete
range information from multiple test benches. Does not merge signal
logging results.

Results and Recommended Actions

Conditions Recommended Action
Simulation does not run. Fix errors so simulation will run.
Fixed-point instrumentation If you are using simulation

mode is not set to Minimums, minimum and maximum values,
maximums and overflows set Fixed-point instrumentation

mode to Minimums, maximums and
overflows. Otherwise, ignore this
warning.

Action Results

Clicking Modify All sets Fixed-point instrumentation mode to Minimums,
maximums and overflows. A table displays the current and previous block
settings.

12-13

1 2 Fixed-Point Advisor Reference

Tips

e [If the simulation is set up to have a long simulation time, after starting the
run of this task you can stop the simulation by selecting the waitbar and
then pressing Ctrl+C. This allows you to change the simulation time and
continue without having to wait for the long simulation to complete.

® Specifying small simulation run times reduces task processing times. You
can change the simulation run time in the Configuration Parameters dialog
box. See “Start time” and “Stop time” in the Simulink reference for more
information.

12-14

Prepare Model for Conversion

Verify Fixed-Point Conversion Guidelines Overview
Verify modeling guidelines related to fixed-point conversion goals.

Description
Validate model-wide settings.

See Also

e “Preparation for Fixed-Point Conversion” on page 5-2

e “Converting a Model from Floating- to Fixed-Point Using Simulation Data”
on page 5-14

12-15

1 2 Fixed-Point Advisor Reference

12-16

Check model configuration data validity diagnostic
parameters settings

Verify that Model Configuration Parameters > Diagnostic > Data
Validity parameters are not set to error.

Description

If the Model Configuration Parameters > Diagnostic > Data Validity
parameters are set to error, the model update diagram action fails in
downstream tasks.

Results and Recommended Actions

Conditions Recommended Action

Detect downcast is set to error. Set all Model Configuration
Parameters > Diagnostics > Data
Validity > Parameters options to
Detect underflow is set to error. warning.

Detect overflow is set to error.

Detect precision loss is set to
error.

Detect loss of tunability is set to
error.

Action Results

Clicking Modify All sets all Model Configuration Parameters >
Diagnostics > Data Validity > Parameters options to warning. A table
displays the current and previous settings.

Prepare Model for Conversion

Implement logic signals as Boolean data

Confirm that Simulink simulations are configured to treat logic signals as
Boolean data.

Description
Configuring logic signals as Boolean data optimizes the code generated in
downstream tasks.

Results and Recommended Actions

Conditions Recommended Action
Implement logic signals as Set Model Configuration
Boolean data is set to of f. Parameters > Optimization

> Implement logic signals as
Boolean data to on.

Action Results

Clicking Modify All selects the model Model Configuration Parameters >
Optimization > Implement logic signals as Boolean data check box. A
table displays the current and previous parameter settings.

12-17

1 2 Fixed-Point Advisor Reference

Check for proper bus usage

Identify any Mux block used as a bus creator and any bus signal treated
as a vector.

Description
This task identifies:

® Mux blocks that are bus creators

® Bus signals that the top-level model treats as vectors

Results and Recommended Actions

Conditions Recommended Action
The Fixed-Point Advisor is not If this task is important to your
operating on a top-level model conversion, start the Fixed-Point

Advisor on the top-level model.

The model is not configured to detect Set Model Configuration

future changes that might result in Parameters > Diagnostics >

improper bus usage. Connectivity > Buses > Bus
signal treated as vector to error.

Note This task is a Simulink task. For more information, see “Check for
proper bus usage” in the Simulink documentation.

12-18

Prepare Model for Conversion

Simulation range checking

Verify that Model Configuration Parameters > Diagnostics >
Simulation range checking is not set to none.

Description

If Model Configuration Parameters > Diagnostics > Simulation range
checking is set to none, the simulation does not generate any range checking
warnings.

Results and Recommended Actions

Conditions Recommended Action

Model Configuration Parameters Set Model Configuration

> Diagnostics > Simulation range Parameters > Diagnostics >

checking is set to none. Simulation range checking to
warning.

Action Results

Clicking Modify All sets Model Configuration Parameters > Diagnostics
> Simulation range checking to warning.

12-19

1 2 Fixed-Point Advisor Reference

12-20

Check for implicit signal resolution

Check if model uses implicit signal resolution.

Description

Models with implicit signal resolution attempt to resolve all named signals
and states to Simulink signal objects, which is inefficient and slows
incremental code generation and model reference. This task identifies those
signals and states for which you may turn off implicit signal resolution and
enforce resolution.

Results and Recommended Actions

Conditions Recommended Action

Model uses implicit signal resolution. ® Set Model Configuration
Parameters > Diagnostics
> Data Validity > Signal
resolution to Explicit only.

e Enforce resolution for each of the
signals and states in the model
by selecting Signal name must
resolve to Simulink signal
object.

Action Results

Clicking Modify All sets Model Configuration Parameters > Diagnostics
> Data Validity > Signal resolution to Explicit only and enforces
resolution for each of the signals and states in the model. Tables display

the current and previous settings.

See Also
“Resolve Signal Objects for Output Data” in the Simulink documentation

Prepare for Data Typing and Scaling

Prepare for Data Typing and Scaling

In this section...

“Prepare for Data Typing and Scaling Overview” on page 12-22
“Review locked data type settings” on page 12-23

“Remove output data type inheritance” on page 12-24

“Relax input data type settings” on page 12-26

“Verify Stateflow charts have strong data typing with Simulink” on page
12-28

“Remove redundant specification between signal objects and blocks” on
page 12-29

“Verify hardware selection” on page 12-31

“Specify block minimum and maximum values” on page 12-33

12-21

1 2 Fixed-Point Advisor Reference

12-22

Prepare for Data Typing and Scaling Overview

Configure blocks with data type inheritance or constraints to avoid data type
propagation errors.

Description

The block settings from this folder simplifies the initial data typing and
scaling. The optimal block configuration is achieved in later stages. The tasks
in this folder are preparation for automatic data typing.

Tips
Block output and parameter minimum and maximum values can be specified
in this step.

See Also

® “Preparation for Fixed-Point Conversion” on page 5-2

® “Converting a Model from Floating- to Fixed-Point Using Simulation Data”
on page 5-14

Prepare for Data Typing and Scaling

Review locked data type settings

Review blocks that currently have their data types locked down and will be
excluded from automatic data typing.

Description

When blocks have their data types locked, the Fixed-Point Advisor excludes
them from automatic data typing. This task identifies blocks that have locked
data types so that you can unlock them.

Results and Recommended Actions

Conditions Recommended Action

Blocks have locked data types. Unlock data types on blocks that
currently have locked data types.

Action Results
Clicking Modify All unlocks data types on blocks that currently have locked
data types.

12-23

1 2 Fixed-Point Advisor Reference

12-24

Remove output data type inheritance
Identify blocks with an inherited output signal data type.

Description
Inherited data types might lead to data type propagation errors.

For floating-point inheritance blocks with floating-point inputs or outputs, the
Fixed-Point Advisor replaces the inheritance with the fixed-point data type
specified by the user. For floating-point inheritance blocks with fixed-point
output and other Simulink and DSP System Toolbox and Communications
System Toolbox™ blocks, the Fixed-Point Advisor now detects inheritance
and replaces it with the compiled data type.

What are Floating-Point Inheritance Blocks?

For floating-point inheritance blocks, when inputs are floating-point, all
internal and output data types are floating point.

Note This task is preparation for automatic data typing, not actual
automatic data typing.

Input Parameters

Data type for blocks with floating-point inheritance
Enter a default fixed-point data type to use for floating-point inheritance
blocks, or select one from the list:

undefined
int8

uint8

int16

uinti6

int32

uint32
fixdt(1,16,4)

Prepare for Data Typing and Scaling

Results and Recommended Actions

Conditions

An input parameter is invalid.

The system or subsystems contain
floating-point inheritance blocks
that have floating-point inputs.

Blocks or Stateflow output data in
the current system or subsystems
have inherited output data types.

Recommended Action

Enter or select a valid value for
the Data type for blocks with
floating-point inheritance input
parameter.

Set the block output data type to the
recommended data type. Remove
floating-point inheritance for these
blocks by explicitly configuring

the Output data type or Output
data type mode parameter to the
recommended value where possible.

Remove output data type inheritance
for blocks by explicitly configuring
the Output data type or Output
data type mode parameter to the
recommended value where possible.

Remove output data type inheritance
for Logical Operator blocks by
clearing the Require all inputs
and outputs to have the same
data type parameter parameter.

Remove Stateflow output data type

inheritance by explicitly configuring
the output data Type property.

Action Results

Clicking Modify All explicitly configures the output data types to the
recommended values where possible. Tables list the previous and current

data types for the reconfigured blocks.

12-25

1 2 Fixed-Point Advisor Reference

12-26

Relax input data type settings
Identify blocks with input data type constraints.

Description

Blocks that have input data type constraints might lead to data type
propagation errors.

Note This task is preparation for automatic data typing, not actual
automatic data typing.

Results and Recommended Actions

Conditions Recommended Action

The input data types of blocks or Explicitly configure flexible input
Stateflow charts in the current data types for blocks by setting
system or subsystems have the InputSameDT parameter to off
constraints. where possible.

Explicitly configure Logical Operator
blocks to have flexible input data
types by setting the A11PortsSameDT
parameter to off.

Explicitly configure flexible
Stateflow chart input data types
by setting the Type method to
Inherited.

Select the Use Strong Data Typing
with Simulink I/O chart property.

Action Results

Clicking Modify All explicitly configures the specified settings to the
recommended value where possible. A table lists the previous and current
settings for the reconfigured blocks.

Prepare for Data Typing and Scaling

Tip
Removing unnecessary data setting restrictions makes it more likely that the
Propose data types task will succeed downstream.

12-27

1 2 Fixed-Point Advisor Reference

Verify Stateflow charts have strong data typing with
Simulink

Verify all Stateflow charts are configured to have strong data typing with
Simulink I/0.

Description

Identify mismatches between input or output fixed-point data in Stateflow
charts and their counterparts in Simulink models.

Note This task is preparation for automatic data typing, not actual
automatic data typing.

Results and Recommended Actions

Conditions Recommended Action

Stateflow charts do not have strong Select the Use Strong Data Typing
data typing with Simulink I/O. with Simulink I/O check box in the
chart properties dialog.

Action Results

Clicking Modify All configures all Stateflow charts to have strong data
typing with Simulink I/O.

12-28

Prepare for Data Typing and Scaling

Remove redundant specification between signal
objects and blocks

Identify and remove redundant data type specification originating from blocks
and Simulink signal objects.

Description

This task prepares your model for automatic data typing by identifying and
removing redundant data type specification originating from blocks and
Simulink signal objects.

Note You must rerun this task whenever you delete or manipulate a
Simulink signal object in the base workspace.

Input Parameters

Remove redundant specification from
Select from the list:

Blocks

Identify and remove redundant data type specification from blocks.
Signal objects

Identify and remove redundant data type specification from Simulink
signal objects.

Results and Recommended Actions

Conditions Recommended Action

Blocks associated with Simulink Set the data type specification of
signal objects do not have their data these blocks to a passive mode, such
type specification set to a passive as Inherit via back propagation.
mode.

Simulink signal objects associated Set the data type specification of
with blocks do not have their data these Simulink signal objects to
type specification set to a passive Auto.

mode.

12-29

1 2 Fixed-Point Advisor Reference

Action Results

Clicking Modify All explicitly configures the properties of the blocks or
Simulink signal objects to the recommended value where possible. A table
displays the current and previous settings.

12-30

Prepare for Data Typing and Scaling

Verify hardware selection
Verify target hardware setting.

Description

Review the hardware device settings and verify they are the settings you
intend to use.

Input Parameters

Default type of all floating-point signals
Enter a default fixed-point data type to use for all floating-point signals,
or select one from the list. For FPGA/ASIC targets, specify the type
explicitly.

Remain floating-point

Use this setting if you are converting only part of the model to fixed
point and want to leave the rest of the model as floating point.

Same as embedded hardware integer

Use this setting if the hardware device specified is a microprocessor.
int8

int16
int32

fixdt(1,16,4)

12-31

1 2 Fixed-Point Advisor Reference

12-32

Results and Recommended Actions

Conditions

The model’s Model Configuration
Parameters > Hardware
Implementation device parameters
are not specified.

Default data type of all
floating-point signals is set
to Remain floating-point

Recommended Action

Provide values for Model
Configuration Parameters >
Hardware Implementation >
Device vendor and Device type
parameters.

For microprocessors, set to Same

as embedded hardware integer.
For FPGA/ASIC, set the data type
explicitly. The Fixed-Point Advisor
uses the sign and word length of this
data type.

See Also

® “Device type”

® “Device vendor”

Prepare for Data Typing and Scaling

Specify block minimum and maximum values
Specify block output and parameter minimum and maximum values.

Description

Block output and parameter minimum and maximum values are used for
fixed-point data typing in other tasks. Typically, they are determined during
the design process based on the system you are creating.

Note This task is preparation for automatic data typing, not actual
automatic data typing.

Results and Recommended Actions

Conditions Recommended Action

Minimum and maximum values are Specify minimum and maximum
not specified for Inport blocks. values for Inport blocks.

Warning if no simulation minimum If you are using simulation minimum

or maximum for any signals. and maximum data, return to
“Create simulation reference data”
to set up signal logging.

Tips

¢ In this task, you can specify minimum and maximum values for any block.

® You can promote simulation minimum and maximum values to output
minimum and maximum values using the Model Advisor Result Explorer,
launched by clicking the Explore Result button. In the center pane
of the Model Advisor Result Explorer, use the check boxes in the
PromoteSimMinMax column to promote values.

¢ If you do not specify block minimum and maximum values, the Propose
data types task might fail later in the conversion.

12-33

1 2 Fixed-Point Advisor Reference

See Also
“Batch-Fix Warnings or Failures” in the Simulink documentation.

12-34

Return to the Fixed-Point Tool to Perform Data Typing and Scaling

Return to the Fixed-Point Tool to Perform Data Typing
and Scaling

Close the Fixed-Point Advisor and return to the Fixed-Point Tool to autoscale
your model.

See Also

e “Preparation for Fixed-Point Conversion” on page 5-2

e “Converting a Model from Floating- to Fixed-Point Using Simulation Data”
on page 5-14

12-35

1 2 Fixed-Point Advisor Reference

12-36

Writing Fixed-Point
S-Functions

This appendix discusses the API for user-written fixed-point S-functions,
which enables you to write Simulink C S-functions that directly handle
fixed-point data types. Note that the API also provides support for standard
floating-point and integer data types. You can find the files and examples
associated with this API in the following locations:

matlabroot/simulink/include/

matlabroot/toolbox/simulink/fixedandfloat/fxpdemos/

“Data Type Support” on page A-2

“Structure of the S-Function” on page A-5

“Storage Containers” on page A-7

“Data Type IDs” on page A-13

“Overflow Handling and Rounding Methods” on page A-20
“Create MEX-Files” on page A-23

“Fixed-Point S-Function Examples” on page A-24

“API Function Reference” on page A-33

A Writing Fixed-Point S-Functions

A-2

Data Type Support

In this section...

“Supported Data Types” on page A-2
“The Treatment of Integers” on page A-3

“Data Type Override” on page A-3

Supported Data Types

The API for user-written fixed-point S-functions provides support for a variety
of Simulink and Simulink Fixed Point data types, including

Built-in Simulink data types

= single

= double

= uint8

= int8

= uint16

= int16

= uint32

= int32

Fixed-point Simulink data types, such as
= sfix16_En15

= ufix32_En16

= ufix128

= sfix37_S3_B5

Data types resulting from a data type override with Scaled double, such as
= flts16

= flts16_Eni15

Data Type Support

= fltu32_S3_B5

For more information, see “Fixed-Point Data Type and Scaling Notation”
on page 2-16.

The Treatment of Integers

The API treats integers as fixed-point numbers with trivial scaling. In [Slope
Bias] representation, fixed-point numbers are represented as

real-world value = (slope X integer) + bias.
In the trivial case, slope = 1 and bias = 0.

In terms of binary-point-only scaling, the binary point is to the right of the
least significant bit for trivial scaling, meaning that the fraction length is zero:

real-world value = integer x 2-/fraction length = jpteger x 20,

In either case, trivial scaling means that the real-world value is equal to the
stored integer value:

real-world value = integer.

All integers, including Simulink built-in integers such as uint8, are treated
as fixed-point numbers with trivial scaling by this API. However, Simulink
built-in integers are different in that their use does not cause a Simulink
Fixed Point software license to be checked out.

Data Type Override

The Fixed-Point Tool enables you to perform various data type overrides on
fixed-point signals in your simulations. This API can handle signals whose
data types have been overridden in this way:

® A signal that has been overridden with Single is treated as a Simulink
built-in single.

® A signal that has been overridden with Double is treated as a Simulink
built-in double.

A Writing Fixed-Point S-Functions

® A signal that has been overridden with Scaled double is treated as being
of data type ScaledDouble.

ScaledDouble signals are a hybrid between floating-point and fixed-point
signals, in that they are stored as doubles with the scaling, sign, and word
length information retained. The value is stored as a floating-point double,
but as with a fixed-point number, the distinction between the stored integer
value and the real-world value remains. The scaling information is applied to
the stored integer double to obtain the real-world value. By storing the value
in a double, overflow and precision issues are almost always eliminated.
Refer to any individual API function reference page at the end of this
appendix to learn how that function treats ScaledDouble signals.

For more information about the Fixed-Point Tool and data type override, see
“Overview of the Fixed-Point Tool” on page 6-2 and the fxptdlg reference

page.

Structure of the S-Function

Structure of the S-Function

The following diagram shows the basic structure of an S-function that directly
handles fixed-point data types.

7% Copyright 1994-2006 The MathWorks. Inc.
#* SRevision: $

SDate: $

-

* File: sfun_user_fxp bare.c

*

% Abstract:

* Bare S—-function that supports fized-point.
*

Sz sEsssasEaSSIIESSISEECasTSIaSsssaszzsE
#* Required setup for C MEX S-function *

Jdeflne S_FUNCTION_NAME sfun_user_{xp bare
#define S_FUNCTION_LEVEL 2

#include <math h>
#include "simstruc h"
#include "fixedpoint h”

i

Include ﬁxedpoinl.h“"'
after simstruc.h static void mdlInitializeSizes(SinStruct =5)
; {

}

static void mdlInitializeSamnpleTimes{SinStruct *S)

}
static void mdlOutputs({SimStruct *#S, int_T tid)

1

static void mdlTerminate(SinStruct *S)

#1fdef MATLAE MEX FILE ## I= this file being compiled as a MEX-file? #®/
#include "simulink.c" /% MEX-file interface mechanism %~

) w finclude "fixedpoint.c"
Include fixedpoint.c #else

after simulink.c #include "cg_sfun.h" /% Code generation registration function =~/
: #endif

The callouts in the diagram alert you to the fact that you must include
fixedpoint.h and fixedpoint.c at the appropriate places in the S-function.
The other elements of the S-function displayed in the diagram follow the
standard requirements for S-functions.

A-5

A Writing Fixed-Point S-Functions

To learn how to create a MEX-file for your user-written fixed-point S-function,
see “Create MEX-Files” on page A-23.

A-6

Storage Containers

Storage Containers

In this section...

“Introduction” on page A-7

“Storage Containers in Simulation” on page A-7

“Storage Containers in Code Generation” on page A-10

Introduction

While coding with the API for user-written fixed-point S-functions, it is
important to keep in mind the difference between storage container size,
storage container word length, and signal word length. The sections that
follow discuss the containers used by the API to store signals in simulation
and code generation.

Storage Containers in Simulation
In simulation, signals are stored in one of several types of containers of a

specific size.

Storage Container Categories
During simulation, fixed-point signals are held in one of the types of storage
containers, as shown in the following table. In many cases, signals are
represented in containers with more bits than their specified word length.

Fixed-Point Storage Containers

Signal Container
Container Category Word Length | Word Length | Container Size
FXP_STORAGE_INT8 (signed) 1 to 8 bits 8 bits 1 byte
FXP_STORAGE_UINTS8 (unsigned)
FXP_STORAGE_INT16 (signed) 9 to 16 bits 16 bits 2 bytes
FXP_STORAGE_UINT16 (unsigned)
FXP_STORAGE_INT32 (signed) 17 to 32 bits 32 bits 4 bytes

FXP_STORAGE_UINT32 (unsigned)

A-7

A Writing Fixed-Point S-Functions

Fixed-Point Storage Containers (Continued)

Signal Container
Container Category Word Length | Word Length | Container Size
FXP_STORAGE_OTHER_SINGLE_WORD | 33 to word Length of 1long | Length of long data
length of long | data type type
data type

FXP_STORAGE_MULTIWORD

Greater than
the word length
of long data
type to 128 bits

Multiples of
length of long
data type to
128 bits

Multiples of length of
long data type to 128
bits

When the number of bits in the signal word length is less than the size of the
container, the word length bits are always stored in the least significant bits
of the container. The remaining container bits must be sign extended:

e [fthe data type is unsigned, the sign extension bits must be cleared to zero.

e [f the data type is signed, the sign extension bits must be set to one for
strictly negative numbers, and cleared to zero otherwise.

For example, a signal of data type sfix6_En4 is held in a FXP_STORAGE_INT8
container. The signal is held in the six least significant bits. The remaining
two bits are set to zero when the signal is positive or zero, and to one when it

1s negative.

A-8

Storage Containers

8-hit container for a signed, 6-bit signd that is positive or zero

r— T =
L0, 070 KlK X | x | x
TN T

Sign extension bits ore set to zero. Signal bits

§-hit container for a signed, 6-hit signd that is negative

r— T T
il Dbl
Sign extension bits re set to one. Signal bits

A signal of data type ufix6_En4 is held in a FXP_STORAGE_UINT8 container.
The signal is held in the six least significant bits. The remaining two bits
are always cleared to zero.

&-hit container for an unsigned, 6-hit signd

r— T
L0, 0| x Xl){ x | x | x
______..-"'—"v'—“—n.,_____/

Sign extension hits ore set to zero. Signal hits

The signal and storage container word lengths are returned by the
ssGetDataTypeFxpWordLength and ssGetDataTypeFxpContainWordLen
functions, respectively. The storage container size is returned by the
ssGetDataTypeStorageContainerSize function. The container category
is returned by the ssGetDataTypeStorageContainCat function, which in
addition to those in the table above, can also return the following values.

A-9

A Writing Fixed-Point S-Functions

Other Storage Containers

Container Category Description

FXP_STORAGE_UNKNOWN Returned if the storage container category is unknown
FXP_STORAGE_SINGLE The container type for a Simulink single
FXP_STORAGE_DOUBLE The container type for a Simulink double

FXP_STORAGE_SCALEDDOUBLE | The container type for a data type that has been overridden with
Scaled double

Storage Containers in Simulation Example

An sfix24 En10 data type has a word length of 24, but is actually stored in
32 bits during simulation. For this signal,

® ssGetDataTypeStorageContainCat returns FXP_STORAGE_INT32.

® ssGetDataTypeStorageContainerSize or sizeof() returns 4, which is
the storage container size in bytes.

® ssGetDataTypeFxpContainWordLen returns 32, which is the storage
container word length in bits.

® ssGetDataTypeFxpWordLength returns 24, which is the data type word
length in bits.

Storage Containers in Code Generation

The storage containers used by this API for code generation are not always
the same as those used for simulation. During code generation, a native C
data type is always used. Floating-point data types are held in C double
or float. Fixed-point data types are held in C signed and unsigned char,
short, int, or long.

Emulation

Because it is valuable for rapid prototyping and hardware-in-the-loop testing,
the emulation of smaller signals inside larger containers is supported in code
generation. For example, a 29-bit signal is supported in code generation

if there is a C data type available that has at least 32 bits. The rules for

A-10

Storage Containers

placing a smaller signal into a larger container, and for dealing with the extra
container bits, are the same in code generation as for simulation.

If a smaller signal is emulated inside a larger storage container in simulation,
1t 1s not necessarily emulated in code generation. For example, a 24-bit signal
1s emulated in a 32-bit storage container in simulation. However, some

DSP chips have native support for 24-bit quantities. On such a target, the

C compiler can define an int or a long to be exactly 24 bits. In this case,

the 24-bit signal is held in a 32-bit container in simulation, and in a 24-bit
container in code generation.

Conversely, a signal that was not emulated in simulation might need to be
emulated in code generation. For example, some DSP chips have minimal
support for integers. On such chips, char, short, int, and long might all

be defined to 32 bits. In that case, it is necessary to emulate 8- and 16-bit

fixed-point data types in code generation.

Storage Container TLC Functions
Since the mapping of storage containers in simulation to storage containers

in code generation is not one-to-one, the Target Language Compiler (TLC)
functions for storage containers are different from those in simulation:
® FixPt_DataTypeNativeType

® FixPt_DataTypeStorageDouble

® FixPt_DataTypeStorageSingle

® FixPt_DataTypeStorageScaledDouble

® FixPt_DataTypeStorageSInt

e FixPt_DataTypeStorageUInt

® FixPt_DataTypeStorageSLong

e FixPt_DataTypeStorageULong

® FixPt_DataTypeStorageSShort

® FixPt_DataTypeStorageUShort

® FixPt_DataTypeStorageMultiword

A-11

A Writing Fixed-Point S-Functions

The first of these TLC functions, FixPt_DataTypeNativeType, is the

closest analogue to ssGetDataTypeStorageContainCat in simulation.

FixPt DataTypeNativeType returns a TLC string that specifies the type of
the storage container, and the Simulink Coder product automatically inserts
a typedef that maps the string to a native C data type in the generated code.

For example, consider a fixed-data type that is held in FXP_STORAGE_INT8 in
simulation. FixPt_DataTypeNativeType will return int8 T. The int8 T will
be typdef’d to a char, short, int, or long in the generated code, depending
upon what is appropriate for the target compiler.

The remaining TLC functions listed above return TRUE or FALSE depending
on whether a particular standard C data type is used to hold a given
API-registered data type. Note that these functions do not necessarily give
mutually exclusive answers for a given registered data type, due to the fact
that C data types can potentially overlap in size. In C,

sizeof(char) < sizeof(short) < sizeof(int) < sizeof(long).

One or more of these C data types can be, and very often are, the same size.

A-12

Data Type IDs

Data Type IDs

In this section...

“The Assignment of Data Type IDs” on page A-13
“Registering Data Types” on page A-14

“Setting and Getting Data Types” on page A-16
“Getting Information About Data Types” on page A-17

“Converting Data Types” on page A-19

The Assignment of Data Type IDs

Each data type used in your S-function is assigned a data type ID. You should
always use data type IDs to get and set information about data types in
your S-function.

In general, the Simulink software assigns data type IDs during model
initialization on a “first come, first served” basis. For example, consider the
generalized schema of a block diagram below.

fix16_En15 <fix32_Endl sfix16_En15 sficla_En12
A § [(|) ———»

Model_1

The Simulink software assigns a data type ID for each output data type in the
diagram in the order it is requested. For simplicity, assume that the order

of request occurs from left to right. Therefore, the output of block A may be
assigned data type ID 13, and the output of block B may be assigned data
type ID 14. The output data type of block C is the same as that of block A, so
the data type ID assigned to the output of block C is also 13. The output of
block D is assigned data type ID 15.

Now if the blocks in the model are rearranged,

A-13

A Writing Fixed-Point S-Functions

A-14

sfix16_En15 sfixl6_En12 sfix32_En30 sfilb_En15
A D [/ § [(

Model_2

The Simulink software still assigns the data type IDs in the order in which
they are used. Therefore each data type might end up with a different data
type ID. The output of block A is still assigned data type ID 13. The output
of block D is now next in line and is assigned data type ID 14. The output of
block B is assigned data type ID 15. The output data type of block C is still
the same as that of block A, so it is also assigned data type ID 13.

This table summarizes the two cases described above.

Data Type ID in Data Type ID in
Block Model 1 Model_2
A 13 13
B 14 15
C 13 13
D 15 14

This example illustrates that there is no strict relationship between the
attributes of a data type and the value of its data type ID. In other words, the
data type ID is not assigned based on the characteristics of the data type it is
representing, but rather on when that data type is first needed.

Note Because of the nature of the assignment of data type IDs, you should
always use API functions to extract information from a data type ID about a
data type in your S-function.

Registering Data Types

The functions in the following table are available in the API for user-written
fixed-point S-functions for registering data types in simulation. Each of these

Data Type IDs

functions will return a data type ID. To see an example of a function being
used, go to the file and line indicated in the table.

Data Type Registration Functions

Function

Description

Example of Use

ssRegisterDataTypeFxpBinaryPoint

Register a fixed-point
data type with
binary-point-only
scaling and return its
data type ID

sfun_user_fxp_asr.c
Line 252

ssRegisterDataTypeFxpFSlopeFixExpBias

Register a fixed-point
data type with [Slope
Bias] scaling specified
in terms of fractional
slope, fixed exponent,
and bias, and return
its data type ID

Not Available

ssRegisterDataTypeFxpScaledDouble

Register a scaled
double data type with
[Slope Bias] scaling
specified in terms of
fractional slope, fixed
exponent, and bias,
and return its data
type ID

Not Available

ssRegisterDataTypeFxpSlopeBias

Register a data type
with [Slope Bias]
scaling and return its
data type ID

sfun_user_fxp_dtprop.c

Line 319

Preassigned Data Type IDs

The Simulink software registers its built-in data types, and those data types
always have preassigned data type IDs. The built-in data type IDs are given

by the following tokens:

e SS_DOUBLE

A-15

A Writing Fixed-Point S-Functions

e SS_SINGLE
e SS_INT8

e SS_UINT8

e SS_INT16

e SS_UINT16

e SS_INT32

e SS_UINT32

* SS_BOOLEAN

You do not need to register these data types. If you attempt to register a

built-in data type, the registration function simply returns the preassigned
data type ID.

Setting and Getting Data Types

Data type IDs are used to specify the data types of input and output ports,
run-time parameters, and DWork states. To set fixed-point data types for
quantities in your S-function, the procedure is as follows:

1 Register a data type using one of the functions listed in the table Data Type
Registration Functions on page A-15. A data type ID is returned to you.

Alternately, you can use one of the preassigned data type IDs of the
Simulink built-in data types.

2 Use the data type ID to set the data type for an input or output port,
run-time parameter, or DWork state using one of the following functions:

® ssSetInputPortDataType
® ssSetOutputPortDataType
® ssSetRunTimeParamInfo

® ssSetDWorkDataType

To get the data type ID of an input or output port, run-time parameter, or
DWork state, use one of the following functions:

A-16

Data Type IDs

® ssGetInputPortDataType

® ssGetOutputPortDataType

® ssGetRunTimeParamInfo

® ssGetDWorkDataType

Getting Information About Data Types

You can use data type IDs with functions to get information about the
built-in and registered data types in your S-function. The functions in the
following tables are available in the API for extracting information about
registered data types. To see an example of a function being used, go to
the file and line indicated in the table. Note that data type IDs can also be
used with all the standard data type access methods in simstruc.h, such as

ssGetDataTypeSize

Storage Container Information Functions

Function

Description

Example of Use

ssGetDataTypeFxpContainWordLen

Return the word length
of the storage container
of a registered data type

sfun_user_fxp_
ContainWordLenProbe.c
Line 181

ssGetDataTypeStorageContainCat

Return the storage
container category of a
registered data type

sfun_user_fxp_asr.c
Line 294

ssGetDataTypeStorageContainerSize

Return the storage
container size of a
registered data type

sfun_user_fxp_
StorageContainSizeProbe.c
Line 171

A-17

A

Writing Fixed-Point S-Functions

A-18

Signal Data Type Information Functions

Function

Description

Example of Use

ssGetDataTypeFxpIsSigned

Determine whether a
fixed-point registered data
type is signed or unsigned

sfun_user_fxp_asr.c
Line 254

ssGetDataTypeFxpWordLength

Return the word length of a
fixed-point registered data

type

sfun_user_fxp_asr.c
Line 255

ssGetDataTypelIsFixedPoint

Determine whether a
registered data type is a
fixed-point data type

sfun_user_fxp_const.c
Line 127

ssGetDataTypelIsFloatingPoint

Determine whether a
registered data type is a
floating-point data type

sfun_user_fxp_
IsFloatingPointProbe.c
Line 176

ssGetDataTypeIsFxpFltApiCompat

Determine whether a
registered data type is
supported by the API for
user-written fixed-point
S-functions

sfun_user_fxp_asr.c
Line 184

ssGetDataTypelIsScalingPow?2

Determine whether a
registered data type has
power-of-two scaling

sfun_user_fxp_asr.c
Line 203

ssGetDataTypelIsScalingTrivial

Determine whether the
scaling of a registered data
type is slope = 1, bias = 0

sfun_user_fxp_
IsScalingTrivialProbe.c
Line 171

Signal Scaling Information Functions

Function Description Example of Use
ssGetDataTypeBias Return the bias of a registered sfun_user_fxp_dtprop.c
data type Line 243

ssGetDataTypeFixedExponent | Return the exponent of the slope

of a registered data type

sfun_user_fxp_dtprop.c
Line 237

Data Type IDs

Signal Scaling Information Functions (Continued)

Function Description Example of Use
ssGetDataTypeFracSlope Return the fractional slope of a | sfun_user_fxp_dtprop.c
registered data type Line 234
ssGetDataTypeFractionLength | Return the fraction length of sfun_user_ fxp_asr.c
a registered data type with Line 256

power-of-two scaling

ssGetDataTypeTotalSlope Return the total slope of the sfun_user_fxp_dtprop.c
scaling of a registered data type | Line 240

Converting Data Types

The functions in the following table allow you to convert values between
registered data types in your fixed-point S-function.

Data Type Conversion Functions

Function Description Example of Use

ssFxpConvert Convert a value from one data type to | Not Available
another data type.

ssFxpConvertFromRealWorldValue | Convert a value of data type double Not Available
to another data type.

ssFxpConvertToRealWorldValue Convert a value of any data type to a | Not Available
double.

A-19

A Writing Fixed-Point S-Functions

A-20

Overflow Handling and Rounding Methods

In this section...

“Tokens for Overflow Handling and Rounding Methods” on page A-20

“Overflow Logging Structure” on page A-21

Tokens for Overflow Handling and Rounding
Methods

The API for user-written fixed-point S-functions provides functions for some
mathematical operations, such as conversions. When these operations

are performed, a loss of precision or overflow may occur. The tokens in

the following tables allow you to control the way an API function handles
precision loss and overflow. The data type of the overflow handling methods is
fxpModeOverflow. The data type of the rounding modes is fxpModeRounding.

Overflow Handling Tokens

Token Description Example of Use
FXP_OVERFLOW_SATURATE Saturate overflows Not Available
FXP_OVERFLOW_WRAP Wrap overflows Not Available

Rounding Method Tokens

Token

Example of
Description Use

FXP_ROUND_CEIL

Round to the closest representable number | Not Available
in the direction of positive infinity

FXP_ROUND_CONVERGENT Round toward nearest integer with ties Not Available

rounding to nearest even integer

FXP_ROUND_FLOOR

Round to the closest representable number | Not Available
in the direction of negative infinity

Overflow Handling and Rounding Methods

Rounding Method Tokens (Continued)

Token Description

Example of
Use

FXP_ROUND_NEAR Round to the closest representable number,
with the exact midpoint rounded in the
direction of positive infinity

Not Available

FXP_ROUND_NEAR_ML Round toward nearest. Ties round toward
negative infinity for negative numbers,
and toward positive infinity for positive
numbers

Not Available

FXP_ROUND_SIMPLEST Automatically chooses between round
toward floor and round toward zero to
produce generated code that is as efficient
as possible

Not Available

FXP_ROUND_ZERO Round to the closest representable number
in the direction of zero

Not Available

Overflow Logging Structure

Math functions of the API, such as ssFxpConvert, can encounter overflows
when carrying out an operation. These functions provide a mechanism to log
the occurrence of overflows and to report that log back to the caller.

You can use a fixed-point overflow logging structure in your S-function by
defining a variable of data type fxpOverflowLogs. Some API functions, such
as ssFxpConvert, accept a pointer to this structure as an argument. The
function initializes the logging structure and maintains a count of each the
following events that occur while the function is being performed:

® Overflows

® Saturations

¢ Divide-by-zeros

A-21

A Writing Fixed-Point S-Functions

A-22

When a function that accepts a pointer to the logging structure is invoked, the
function initializes the event counts of the structure to zero. The requested
math operations are then carried out. Each time an event is detected, the
appropriate event count is incremented by one.

The following fields contain the event-count information of the structure:

® OverflowOccurred
® SaturationOccurred

® DivisionByZeroOccurred

Create MEX-Files

Create MEX-Files

To create a MEX-file for a user-written fixed-point C S-function on either
Windows® or UNIX® systems:

¢ In your S-function, include fixedpoint.c and fixedpoint.h. For more
information, see “Structure of the S-Function” on page A-5.

¢ Pass an extra argument, -1fixedpoint, to the mex command. For example,

mex('sfun_user_fxp_asr.c','-1fixedpoint')

A-23

A Writing Fixed-Point S-Functions

A-24

Fixed-Point S-Function Examples

In this section...

“List of Fixed-Point S-Function Examples” on page A-24

“Get the Input Port Data Type” on page A-25

“Set the Output Port Data Type” on page A-27

“Interpret an Input Value” on page A-28

“Write an Output Value” on page A-30

“Use the Input Data Type to Determine the Output Data Type” on page A-32

List of Fixed-Point S-Function Examples
The following files in

matlabroot/toolbox/simulink/fixedandfloat/fxpdemos/ are examples of
S-functions written with the API for user-written fixed-point S-functions:
e sfun_user_fxp_asr.c

e sfun_user_fxp_BiasProbe.c

e sfun_user_fxp_const.c

e sfun_user_fxp_ContainWordLenProbe.c

e sfun_user_fxp_dtprop.c

e sfun_user_fxp_FixedExponentProbe.c

e sfun_user_fxp_FracLengthProbe.c

e sfun_user_fxp_FracSlopeProbe.c

e sfun_user_fxp_IsFixedPointProbe.c

e sfun_user_fxp_IsFloatingPointProbe.c

e sfun_user_fxp_IsFxpFltApiCompatProbe.c

e sfun_user_fxp_IsScalingPow2Probe.c

e sfun_user_fxp_IsScalingTrivialProbe.c

e sfun_user_fxp_IsSignedProbe.c

Fixed-Point S-Function Examples

e sfun_user_fxp_prodsum.c

e sfun_user_fxp_StorageContainCatProbe.c
e sfun_user_fxp_StorageContainSizeProbe.c
e sfun_user_fxp_TotalSlopeProbe.c

e sfun_user_fxp_U32BitRegion.c

e sfun_user_fxp_WordLengthProbe.c

The sections that follow present smaller portions of code that focus on specific
kinds of tasks you might want to perform within your S-function.

Get the Input Port Data Type

Within your S-function, you might need to know the data types of different
ports, run-time parameters, and DWorks. In each case, you will need to get
the data type ID of the data type, and then use functions from this API to
extract information about the data type.

For example, suppose you need to know the data type of your input port. To
do this,

1 Use ssGetInputPortDataType. The data type ID of the input port is
returned.

2 Use API functions to extract information about the data type.
The following lines of example code are from sfun_user_fxp_dtprop.c.

In lines 191 and 192, ssGetInputPortDataType is used to get the data type
ID for the two input ports of the S-function:

dataTypeIdUO = ssGetInputPortDataType(S, 0);
dataTypeIdU1 = ssGetInputPortDataType(S, 1)

)

Further on in the file, the data type IDs are used with API functions to get
information about the input port data types. In lines 205 through 226, a check
1s made to see whether the input port data types are single or double:

storageContainerU0 = ssGetDataTypeStorageContainCat(S,

A-25

A Writing Fixed-Point S-Functions

dataTypeIduo);
storageContainerUl = ssGetDataTypeStorageContainCat(S,
dataTypeIdul);

if (storageContainerU0 == FXP_STORAGE_DOUBLE | |
storageContainerUi == FXP_STORAGE_DOUBLE)

{
/* Doubles take priority over all other rules.
* If either of first two inputs is double,
* then third input is set to double.
*/
dataTypeIdU2Desired = SS_DOUBLE;
}

else if (storageContainerU0 == FXP_STORAGE_SINGLE ||
storageContainerUi == FXP_STORAGE_SINGLE)

{
/* Singles take priority over all other rules,
* except doubles.
* If either of first two inputs is single
* then third input is set to single.
*/
dataTypeIdU2Desired = SS_SINGLE;
}
else

In lines 227 through 244, additional API functions are used to get information
about the data types if they are neither single nor double:

isSignedU0 = ssGetDataTypeFxpIsSigned(S, dataTypeIduoO);
isSignedU1 = ssGetDataTypeFxpIsSigned(S, dataTypeIdul);

wordLengthUO0 = ssGetDataTypeFxpWordLength(S, dataTypeIdUO);
wordLengthU1 = ssGetDataTypeFxpWordLength(S, dataTypeIdUl);

fracSlopeUO = ssGetDataTypeFracSlope(S, dataTypeIduo);
fracSlopeU1 = ssGetDataTypeFracSlope(S, dataTypeIdutl);

fixedExponentUO = ssGetDataTypeFixedExponent(S,dataTypeIdU0);
fixedExponentU1 = ssGetDataTypeFixedExponent(S,dataTypeldutl);

A-26

Fixed-Point S-Function Examples

totalSlopeUO = ssGetDataTypeTotalSlope(S, dataTypeIduo);
totalSlopeU1 = ssGetDataTypeTotalSlope(S, dataTypeIdutl);

biasU0 = ssGetDataTypeBias(S, dataTypeIdUO);
biasU1 = ssGetDataTypeBias(S, dataTypeIdUl);
}

The functions used above return whether the data types are signed or
unsigned, as well as their word lengths, fractional slopes, exponents, total
slopes, and biases. Together, these quantities give full information about the
fixed-point data types of the input ports.

Set the Output Port Data Type

You may want to set the data type of various ports, run-time parameters, or
DWorks in your S-function.

For example, suppose you want to set the output port data type of your
S-function. To do this,

1 Register a data type by using one of the functions listed in the table Data
Type Registration Functions on page A-15. A data type ID is returned.

Alternately, you can use one of the predefined data type IDs of the Simulink
built-in data types.

2 Use ssSetOutputPortDataType with the data type ID from Step 1 to set
the output port to the desired data type.

In the example below from lines 336 - 352 of sfun_user_fxp_const.c,
ssRegisterDataTypeFxpBinaryPoint is used to register the data type.
ssSetOutputPortDataType then sets the output data type either to the given
data type ID, or to be dynamically typed:

/* Register data type
*/
if (notSizesOnlyCall)
{
DTypeld DataTypeld = ssRegisterDataTypeFxpBinaryPoint (
S,

A-27

A Writing Fixed-Point S-Functions

V_ISSIGNED,
V_WORDLENGTH,
V_FRACTIONLENGTH,
1 /* true means obey data type override setting for
this subsystem */);

ssSetOutputPortDataType(S, 0, DataTypeld);
}

else

{
ssSetOutputPortDataType(S, O, DYNAMICALLY_TYPED);

}

Interpret an Input Value

Suppose you need to get the value of the signal on your input port to use

in your S-function. You should write your code so that the pointer to the
input value is properly typed, so that the values read from the input port are
interpreted correctly. To do this, you can use these steps, which are shown
in the example code below:

1 Create a void pointer to the value of the input signal.
2 Get the data type ID of the input port using ssGetInputPortDataType.
3 Use the data type ID to get the storage container type of the input.

4 Have a case for each input storage container type you want to handle.
Within each case, you will need to perform the following in some way:

® (Create a pointer of the correct type according to the storage container,
and cast the original void pointer into the new fully typed pointer (see a
and c).

® You can now store and use the value by dereferencing the new, fully
typed pointer (see b and d).

For example,

static void mdlOutputs(SimStruct *S, int T tid)
{

const void *pVoidIn =

A-28

Fixed-Point S-Function Examples

(const void *)ssGetInputPortSignal(S, 0); (1)
DTypeId dataTypeIdUO = ssGetInputPortDataType(S, 0); (2)

fxpStorageContainerCategory storageContainerU0 =
ssGetDataTypeStorageContainCat(S, dataTypeIdUO); (3)

switch (storageContaineruo)

{
case FXP_STORAGE_UINT8: (4)

{
const uint8_T *pU8_Properly Typed Pointer_To_UO; (a)

uint8 T u8_Stored_Integer_UO; (b)

pU8_Properly Typed Pointer_To U0 =
(const uint8 T *)pVoidIn; (c)

u8_Stored_Integer_UO =
*pU8_Properly Typed_Pointer_To_UO; (d)

<snip: code that uses input when it's in a uint8_T>

}

break;
case FXP_STORAGE_INT8: (4)
{ const int8_T *pS8 Properly Typed Pointer_To _UO; (a)
int8_T s8_Stored_Integer_UO; (b)

pS8_Properly Typed Pointer_To U0 =
(const int8_ T *)pVoidIn; (c)

s8_Stored_Integer_UO =
*pS8_Properly Typed_Pointer_To_UO; (d)

<snip: code that uses input when it's in a int8_T>

}

break;

A-29

A Writing Fixed-Point S-Functions

A-30

Write an Output Value
Suppose you need to write the value of the output signal to the output port
in your S-function. You should write your code so that the pointer to the

output value 1s properly typed. To do this, you can use these steps, which are
followed in the example code below:

1 Create a void pointer to the value of the output signal.
2 Get the data type ID of the output port using ssGetOutputPortDataType.
3 Use the data type ID to get the storage container type of the output.

4 Have a case for each output storage container type you want to handle.
Within each case, you will need to perform the following in some way:

¢ Create a pointer of the correct type according to the storage container,
and cast the original void pointer into the new fully typed pointer (see a
and c).

® You can now write the value by dereferencing the new, fully typed
pointer (see b and d).

For example,

static void mdlOutputs(SimStruct *S, int_T tid)
{

<snip>
void *pVoidOut = ssGetOutputPortSignal(S, 0); (1)
DTypeId dataTypeIdY0 = ssGetOutputPortDataType(S, 0); (2)

fxpStorageContainerCategory storageContainerYO =
ssGetDataTypeStorageContainCat(S,
dataTypeIdY0); (3)

switch (storageContainerYO)

{
case FXP_STORAGE_UINT8: (4)

{
const uint8_T *pU8_Properly_Typed_Pointer_To_YO; (a)

Fixed-Point S-Function Examples

uint8_T u8_Stored_Integer_YO0; (b)

<snip: code that puts the desired output stored integer
value in to temporary variable u8_Stored_Integer_YO>

puU8_Properly Typed_Pointer_To YO =
(const uint8_ T *)pVoidOut; (c)

*pU8_Properly Typed_Pointer_To YO =
u8_Stored_Integer_YO0; (d)

}

break;
case FXP_STORAGE_INT8: (4)
{
const int8 T *pS8_Properly Typed_Pointer_To_YO; (a)

int8 T s8 Stored_Integer_YO0; (b)

<snip: code that puts the desired output stored integer
value in to temporary variable s8_Stored_Integer_YO>

pS8_Properly Typed_Pointer_To YO =
(const int8_ T *)pVoidY0; (c)

*pS8_Properly Typed_Pointer_To YO =
s8_Stored_Integer_YO0; (d)

}

break;

<snip>

A-31

A Writing Fixed-Point S-Functions

Use the Input Data Type to Determine the Output
Data Type

The following sample code from lines 243 through 261 of sfun_user_fxp_asr.c
gives an example of using the data type of the input to your S-function to
calculate the output data type. Notice that in this code

¢ The output is signed or unsigned to match the input (a).
¢ The output is the same word length as the input (b).

¢ The fraction length of the output depends on the input fraction length
and the number of shifts (c).

#define MDL_SET_INPUT_PORT_DATA TYPE

static void mdlSetInputPortDataType(SimStruct *S, int port,
DTypeId dataTypeIdInput)

{
if (isDataTypeSupported(S, dataTypeIdInput))

{
DTypeId dataTypeIdOutput;

ssSetInputPortDataType(S, port, dataTypeldInput);

dataTypeIdOutput = ssRegisterDataTypeFxpBinaryPoint (
S,
ssGetDataTypeFxpIsSigned(S, dataTypeIdInput), (a)
ssGetDataTypeFxpWordLength(S, dataTypeIdInput), (b)
ssGetDataTypeFractionLength(S, dataTypelIdInput)
- V_NUM_BITS_TO_SHIFT_RGHT, (c)
0 /* false means do NOT obey data type override
setting for this subsystem */);

ssSetOutputPortDataType(S, 0, dataTypeIdOutput);

A-32

AP| Function Reference

API Function Reference

A-33

ssFxpConvert

Purpose Convert value from one data type to another

Syntax extern void ssFxpConvert (SimStruct *S,
void *pVoidDest,
size_t sizeofDest,
DTypeld dataTypeIdDest,
const void *pVoidSrc,
size_t sizeofSrc,
DTypeld dataTypelIdSrc,
fxpModeRounding roundMode,
fxpModeOverflow overflowMode,
fxpOverflowLogs *pFxpOverflowLogs)

Arguments s
SimStruct representing an S-function block.

pVoidDest
Pointer to the converted value.

sizeofDest
Size in memory of the converted value.

dataTypelIdDest
Data type ID of the converted value.

pvoidSrc
Pointer to the value you want to convert.

sizeofSrc
Size in memory of the value you want to convert.

dataTypeIdSrc
Data type ID of the value you want to convert.

roundMode
Rounding mode you want to use if a loss of precision is necessary
during the conversion. Possible values are FXP_ROUND_CEIL,
FXP_ROUND_CONVERGENT, FXP_ROUND_FLOOR, FXP_ROUND_NEAR,
FXP_ROUND_NEAR_ML, FXP_ROUND_SIMPLEST and FXP_ROUND_ZERO.

A-34

ssFxpConvert

Description
Requirement

Languages

TLC
Functions

See Also

overflowMode
Overflow mode you want to use if overflow occurs during the
conversion. Possible values are FXP_OVERFLOW_SATURATE and
FXP_OVERFLOW_WRAP.

pFxpOverflowLogs
Pointer to the fixed-point overflow logging structure.

This function converts a value of any registered built-in or fixed-point
data type to any other registered built-in or fixed-point data type.

To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-5.

C

None

ssFxpConvertFromRealWorldValue, ssFxpConvertToRealWorldValue

A-35

ssFxpConvertFromRealWorldValue

Purpose Convert value of data type double to another data type

Syntax extern void ssFxpConvertFromRealWorldValue
(SimStruct *S,
void *pVoidDest,
size_t sizeofDest,
DTypeld dataTypeIdDest,
double dblRealWorldValue,
fxpModeRounding roundMode,
fxpModeOverflow overflowMode,
fxpOverflowLogs *pFxpOverflowLogs)

Arguments S
SimStruct representing an S-function block.

pVoidDest
Pointer to the converted value.

sizeofDest
Size in memory of the converted value.

dataTypeldDest
Data type ID of the converted value.

dblRealWorldValue
Double value you want to convert.

roundMode
Rounding mode you want to use if a loss of precision is necessary
during the conversion. Possible values are FXP_ROUND_CEIL,
FXP_ROUND_CONVERGENT, FXP_ROUND_FLOOR, FXP_ROUND_NEAR,
FXP_ROUND_NEAR_ML, FXP_ROUND_SIMPLEST and FXP_ROUND_ZERO.

overflowMode
Overflow mode you want to use if overflow occurs during the
conversion. Possible values are FXP_OVERFLOW_SATURATE and
FXP_OVERFLOW_WRAP.

pFxpOverflowlLogs
Pointer to the fixed-point overflow logging structure.

A-36

ssFxpConvertFromRealWorldValue

Description
Requirement

Languages

TLC
Functions

See Also

This function converts a double value to any registered built-in or
fixed-point data type.

To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-5.

C

None

ssFxpConvert, ssFxpConvertToRealWorldValue

A-37

ssFxpConveritToRealWorldValue

Purpose

Syntax

Arguments

Description
Requirement
Languages

TLC
Functions

See Also

A-38

Convert value of any data type to double

extern double ssFxpConvertToRealWorldValue (SimStruct *S,
const void *pVoidSrc,
size_t sizeofSrc,
DTypeld dataTypeIdSrc)

SimStruct representing an S-function block.

pvoidSrc
Pointer to the value you want to convert.

sizeofSrc
Size in memory of the value you want to convert.

dataTypeIdSrc
Data type ID of the value you want to convert.

This function converts a value of any registered built-in or fixed-point
data type to a double.

To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-5.

C

None

ssFxpConvert, ssFxpConvertFromRealWorldValue

ssFxpGetU32BitRegion

Purpose

Syntax

Arguments

Description

Requirement

Return stored integer value for 32-bit region of real, scalar signal
element

extern uint32 ssFxpGetU32BitRegion(SimStruct *S,
const void *pVoid
DTypeld dataTypeld
unsigned int regionIndex)

S
SimStruct representing an S-function block.

pvoid
Pointer to the storage container of the real, scalar signal element
in which the 32-bit region of interest resides.

dataTypeld
Data type ID of the registered data type corresponding to the
signal.

regionIndex

Index of the 32-bit region whose stored integer value you want to
retrieve, where 0 accesses the least significant 32-bit region.

This function returns the stored integer value in the 32-bit region
specified by regionIndex, associated with the fixed-point data type
designated by dataTypeId. You can use this function with any
fixed-point data type, including those with word sizes less than 32 bits.
If the fixed-point word size is less than 32 bits, the remaining bits are
sign extended.

This function generates an error if dataTypeld represents a
floating-point data type.

To view an example model whose S-functions use the
ssFxpGetU32BitRegion function, at the MATLAB prompt, enter
fxpdemo_sfun_user_U32BitRegion

To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-5.

A-39

ssFxpGetU32BitRegion

Languages C

See Also ssFxpSetU32BitRegion

A-40

ssFxpGetU32BitRegionCompliant

Purpose
Syntax

Arguments

Description

Requirement

Determine whether S-function is compliant with the U32 bit region
interface

extern ssFxpSGetU32BitRegionCompliant (SimStruct *S,
int *result)

SimStruct representing an S-function block.
result

e 1 if S-function calls ssFxpSetU32BitRegionCompliant to
declare compliance with memory footprint for fixed-point data
types with 33 or more bits

¢ 0 if S-function does not call ssFxpSetU32BitRegionCompliant

This function checks whether the S-function calls
ssFxpSetU32BitRegionCompliant to declare compliance with

the memory footprint for fixed-point data types with 33 or more bits.
Before calling any other Simulink Fixed Point API function on data
with 33 or more bits, you must call ssFxpSetU32BitRegionCompliant
as follows:

ssFxpSetU32BitRegionCompliant(S,1);

Note The Simulink Fixed Point software assumes that S-functions
that use fixed-point data types with 33 or more bits without calling
ssFxpSetU32BitRegionCompliant are using the obsolete memory
footprint that existed until R2007b. Either redesign these S-functions
or isolate them using the library fixpt_legacy_sfun_support.

To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-5.

A-41

ssFxpGetU32BitRegionCompliant

Languages C

See Also ssFxpSetU32BitRegionCompliant

A-42

ssFxpSetU32BitRegion

Purpose

Syntax

Arguments

Description

Set stored integer value for 32-bit region of real, scalar signal element

extern ssFxpSetU32BitRegion(SimStruct *S,
void *pVoid
DTypeld dataTypeld
uint32 regionValue
unsigned int regionIndex)

S
SimStruct representing an S-function block.
pvoid
Pointer to the storage container of the real, scalar signal element
in which the 32-bit region of interest resides.
dataTypeld
Data type ID of the registered data type corresponding to the
signal.
regionValue
Stored integer value that you want to assign to a 32-bit region.
regionIndex

Index of the 32-bit region whose stored integer value you want to
set, where 0 accesses the least significant 32-bit region.

This function sets regionValue as the stored integer value of the 32-bit
region specified by regionIndex, associated with the fixed-point data
type designated by dataTypeId. You can use this function with any
fixed-point data type, including those with word sizes less than 32
bits. If the fixed-point word size is less than 32 bits, ensure that the
remaining bits are sign extended.

This function generates an error if dataTypeld represents a
floating-point data type, or if the stored integer value that you set is
invalid.

A-43

ssFxpSetU32BitRegion

To view an example model whose S-functions use the
ssFxpSetU32BitRegion function, at the MATLAB prompt, enter
fxpdemo_sfun_user_U32BitRegion.

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-5.

Languages C

See Also ssFxpGetU32BitRegion

A-44

ssFxpSetU32BitRegionCompliant

Purpose
Syntax

Arguments

Description

Declare compliance with the U32 bit region interface for fixed-point
data types with 33 or more bits

extern ssFxpSetU32BitRegionCompliant(SimStruct *S,
int Value)

SimStruct representing an S-function block.
Value

¢ 1 declare compliance with memory footprint for fixed-point
data types with 33 or more bits.

This function declares compliance with the Simulink Fixed Point bit
region interface for data types with 33 or more bits. The memory
footprint for data types with 33 or more bits varies between MATLAB
host platforms and might change between software releases. To
make an S-function robust to memory footprint changes, use the U32
bit region interface. You can use identical source code on different
MATLAB host platforms and with any software release from R2008b.
If the memory footprint changes between releases, you do not have to
recompile U32 bit region compliant S-functions.

To make an S-function U32 bit region compliant, before calling any
other Simulink Fixed Point API function on data with 33 or more bits,
you must call this function as follows:

ssFxpSetU32BitRegionCompliant(S,1);

If an S-function block contains a fixed-point data type with 33 or more
bits, call this function in mdlInitializeSizes().

A-45

ssFxpSetU32BitRegionCompliant

Note The Simulink Fixed Point software assumes that S-functions
that use fixed-point data types with 33 or more bits without calling
ssFxpSetU32BitRegionCompliant are using the obsolete memory
footprint that existed until R2007b. Either redesign these S-functions
or isolate them using the library fixpt_legacy_ sfun_support.

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-5.

Languages C

See Also ssFxpGetU32BitRegionCompliant

A-46

ssGetDataTypeBias

Purpose

Syntax

Arguments

Description

Requirement

Languages

TLC
Functions

See Also

Return bias of registered data type

extern double ssGetDataTypeBias(SimStruct *S, DTypeld
dataTypeld)

SimStruct representing an S-function block.

dataTypeld
Data type ID of the registered data type for which you want to
know the bias.

Fixed-point numbers can be represented as
real-world value = (slope X integer) + bias.
This function returns the bias of a registered data type:

® For both trivial scaling and power-of-two scaling, 0 is returned.

e [If the registered data type is ScaledDouble, the bias returned is that
of the nonoverridden data type.

This function errors out when ssGetDataTypeIsFxpFltApiCompat
returns FALSE.

To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-5.

C

FixPt_DataTypeBias

ssGetDataTypeFixedExponent, ssGetDataTypeFracSlope
ssGetDataTypeTotalSlope

A-47

ssGetDataTypeFixedExponent

A-48

Purpose

Syntax

Arguments

Description

Requirement

Languages

Return exponent of slope of registered data type

extern int ssGetDataTypeFixedExponent (SimStruct *S, DTypeld
dataTypelId)

SimStruct representing an S-function block.

dataTypeld
Data type ID of the registered data type for which you want to
know the exponent.

Fixed-point numbers can be represented as
real-world value = (slope X integer) + bias,
where the slope can be expressed as
slope = fractional slope X 2exponent,
This function returns the exponent of a registered fixed-point data type:

® For power-of-two scaling, the exponent is the negative of the fraction
length.

e [If the data type has trivial scaling, including for data types single
and double, the exponent is 0.

e [If the registered data type is ScaledDouble, the exponent returned is
that of the nonoverridden data type.

This function errors out when ssGetDataTypeIsFxpFltApiCompat
returns FALSE.

To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-5.

C

ssGetDataTypeFixedExponent
|

TLC FixPt_DataTypeFixedExponent
Functions
See Also ssGetDataTypeBias, ssGetDataTypeFracSlope,

ssGetDataTypeTotalSlope

A-49

ssGetDataTypeFracSlope

Purpose Return fractional slope of registered data type

Syntax extern double ssGetDataTypeFracSlope(SimStruct *S, DTypeld
dataTypelId)

Arguments s

SimStruct representing an S-function block.

dataTypeld
Data type ID of the registered data type for which you want to
know the fractional slope.

Description Fixed-point numbers can be represented as
real-world value = (slope X integer) + bias,
where the slope can be expressed as
slope = fractional slope X 2exponent,

This function returns the fractional slope of a registered fixed-point
data type. To get the total slope, use ssGetDataTypeTotalSlope:
® For power-of-two scaling, the fractional slope is 1.

e [If the data type has trivial scaling, including data types single and
double, the fractional slope is 1.

e [If the registered data type is ScaledDouble, the fractional slope
returned is that of the nonoverridden data type.

This function errors out when ssGetDataTypeIsFxpFltApiCompat
returns FALSE.

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-5.

Languages C

A-50

ssGetDataTypeFracSlope
|

TLC FixPt_DataTypeFracSlope
Functions
See Also ssGetDataTypeBias, ssGetDataTypeFixedExponent,

ssGetDataTypeTotalSlope

A-51

ssGetDataTypeFractionLength

Purpose

Syntax

Arguments

Description

Requirement

Languages

TLC
Functions

See Also

A-52

Return fraction length of registered data type with power-of-two scaling

extern int ssGetDataTypeFractionLength (SimStruct *S, DTypeld
dataTypelId)

SimStruct representing an S-function block.

dataTypeld
Data type ID of the registered data type for which you want to
know the fraction length.

This function returns the fraction length, or the number of bits to the
right of the binary point, of the data type designated by dataTypeId.

This function errors out when ssGetDataTypeIsScalingPow2 returns
FALSE.

This function also errors out when ssGetDataTypeIsFxpFltApiCompat
returns FALSE.

To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-5.

C

FixPt_DataTypeFractionLength

ssGetDataTypeFxpWordLength

ssGetDataTypeFxpContainWordLen

Purpose

Syntax

Arguments

Description

Requirement

Languages

Examples

Return word length of storage container of registered data type

extern int ssGetDataTypeFxpContainWordLen (SimStruct *S,
DTypeld dataTypeId)

SimStruct representing an S-function block.

dataTypeld
Data type ID of the registered data type for which you want to
know the container word length.

This function returns the word length, in bits, of the storage
container of the fixed-point data type designated by dataTypeld.
This function does not return the size of the storage container or the
word length of the data type. To get the storage container size, use
ssGetDataTypeStorageContainerSize. To get the data type word
length, use ssGetDataTypeFxpWordLength

To use this function, you must include fixedpoint.h and fixedpoint.c.

For more information, see “Structure of the S-Function” on page A-5.
C

An sfix24 En10 data type has a word length of 24, but is actually
stored in 32 bits during simulation. For this signal,

® ssGetDataTypeFxpContainWordLen returns 32, which is the storage

container word length in bits.

® ssGetDataTypeFxpWordLength returns 24, which is the data type
word length in bits.

® ssGetDataTypeStorageContainerSize or sizeof() returns 4,
which is the storage container size in bytes.

A-53

ssGetDataTypeFxpContainWordLen

TLC FixPt_DataTypeFxpContainWordLen
Functions
See Also ssGetDataTypeFxpWordLength, ssGetDataTypeStorageContainCat,

ssGetDataTypeStorageContainerSize

A-54

ssGetDataTypeFxplsSigned

Purpose
Syntax

Arguments

Description

Requirement

Languages

TLC
Functions

Determine whether fixed-point registered data type is signed or
unsigned

extern int ssGetDataTypeFxpIsSigned (SimStruct *S, DTypeld
dataTypelId)

SimStruct representing an S-function block.

dataTypeld
Data type ID of the registered fixed-point data type for which you
want to know whether it is signed.

This function determines whether a registered fixed-point data type is
signed:

e [f the fixed-point data type is signed, the function returns TRUE. If
the fixed-point data type is unsigned, the function returns FALSE.

e Ifthe registered data type is ScaledDouble, the function returns TRUE
or FALSE according to the signedness of the nonoverridden data type.

e [If the registered data type 1s single or double, this function errors
out.

This function errors out when ssGetDataTypeIsFxpFltApiCompat
returns FALSE.

To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-5.

C

FixPt_DataTypeFxpIsSigned

A-55

ssGetDataTypeFxpWordLength

Purpose

Syntax

Arguments

Description

Requirement

Languages

Examples

A-56

Return word length of fixed-point registered data type

extern int ssGetDataTypeFxpWordLength (SimStruct *S, DTypeld
dataTypelId)

SimStruct representing an S-function block.

dataTypeld
Data type ID of the registered fixed-point data type for which you
want to know the word length.

This function returns the word length of the fixed-point data type
designated by dataTypeId. This function does not return the word
length of the container of the data type. To get the container word
length, use ssGetDataTypeFxpContainWordLen

e [f the registered data type is fixed point, this function returns the
total word length including any sign bits, integer bits, and fractional
bits.

e [If the registered data type is ScaledDouble, this function returns the
word length of the nonoverridden data type.

® If registered data type is single or double, this function errors out.

This function errors out when ssGetDataTypeIsFxpFltApiCompat
returns FALSE.

To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-5.

C

An sfix24 En10 data type has a word length of 24, but is actually
stored in 32 bits during simulation. For this signal,

ssGetDataTypeFxpWordLength

® ssGetDataTypeFxpWordLength returns 24, which is the data type
word length in bits.

® ssGetDataTypeFxpContainWordLen returns 32, which is the storage
container word length in bits.

® ssGetDataTypeStorageContainerSize or sizeof() returns 4,
which is the storage container size in bytes.

TLC FixPt_DataTypeFxpWordLength
Functions
See Also ssGetDataTypeFxpContainWordLen, ssGetDataTypeFractionLength,

ssGetDataTypeStorageContainerSize

A-57

ssGetDataTypelsFixedPoint

Purpose Determine whether registered data type is fixed-point data type
Syntax extern int ssGetDataTypeIsFixedPoint(SimStruct *S, DTypeld

dataTypelId)
Arguments s

SimStruct representing an S-function block.

dataTypeld
Data type ID of the registered data type for which you want to
know whether it is fixed-point.

Description This function determines whether a registered data type is a fixed-point
data type:

® This function returns TRUE if the registered data type is fixed-point,
and FALSE otherwise.

¢ [fthe registered data type is a pure Simulink integer, such as int8,
this function returns TRUE.

e [If the registered data type is ScaledDouble, this function returns
FALSE.

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-5.

Languages C

TLC FixPt_DataTypeIsFixedPoint
Functions

See Also ssGetDataTypelIsFloatingPoint

A-58

ssGetDataTypelsFloatingPoint

Purpose

Syntax

Arguments

Description

Requirement

Languages

TLC
Functions

See Also

Determine whether registered data type is floating-point data type

extern int ssGetDataTypeIsFloatingPoint (SimStruct *S, DTypeld
dataTypelId)

SimStruct representing an S-function block.

dataTypeld
Data type ID of the registered data type for which you want to
know whether it is floating-point.

This function determines whether a registered data type is single or
double:

e [If the registered data type is either single or double, this function
returns TRUE, and FALSE is returned otherwise.

e [If the registered data type is ScaledDouble, this function returns
FALSE.

To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-5.

C

FixPt_DataTypeIsFloatingPoint

ssGetDataTypelIsFixedPoint

A-59

ssGetDataTypelsFxpFltApiCompat

Purpose
Syntax

Arguments

Description

Requirement
Languages

TLC
Functions

A-60

Determine whether registered data type is supported by API for
user-written fixed-point S-functions

extern int ssGetDataTypeIsFxpFltApiCompat(SimStruct *S, DTypeld
dataTypelId)

SimStruct representing an S-function block.

dataTypeld
Data type ID of the registered data type for which you want to
determine compatibility with the API for user-written fixed-point
S-functions.

This function determines whether the registered data type is supported
by the API for user-written fixed-point S-functions. The supported data
types are all standard Simulink data types, all fixed-point data types,
and data type override data types.

To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-5.

C

None. Checking for API-compatible data types is done in simulation.
Checking for API-compatible data types is not supported in TLC.

ssGetDataTypelsScalingPow2

Purpose

Syntax

Arguments

Description

Determine whether registered data type has power-of-two scaling

extern int ssGetDataTypeIsScalingPow2 (SimStruct *S, DTypeld
dataTypelId)

SimStruct representing an S-function block.

dataTypeld
Data type ID of the registered data type for which you want to
know whether the scaling is strictly power-of-two.

This function determines whether the registered data type is scaled
strictly by a power of two. Fixed-point numbers can be represented as

real-world value = (slope X integer) + bias,
where the slope can be expressed as
slope = fractional slope X 2exponent,

When bias = 0 and fractional slope = 1, the only scaling factor that
remains is a power of two:

real-world value = (2eronent X jnteger) = (2-/raction length x jnteger).

Trivial scaling is considered a case of power-of-two scaling, with the
exponent being equal to zero.

Note Many fixed-point algorithms are designed to accept

only power-of-two scaling. For these algorithms, you can call
ssGetDataTypeIsScalingPow2 in md1SetInputPortDataType and
md1lSetOutputPortDataType, to prevent unsupported data types from
being accepted.

A-61

ssGetDataTypelsScalingPow2

This function errors out when ssGetDataTypeIsFxpFltApiCompat
returns FALSE.

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-5.

Languages C

TLC FixPt_DataTypeIsScalingPow2
Functions

See Also ssGetDataTypelIsScalingTrivial

A-62

ssGetDataTypelsScalingTrivial

Purpose

Syntax

Arguments

Description

Determine whether scaling of registered data type is slope = 1, bias =0

extern int ssGetDataTypeIsScalingTrivial (SimStruct *S, DTypeld
dataTypelId)

SimStruct representing an S-function block.

dataTypeld
Data type ID of the registered data type for which you want to
know whether the scaling is trivial.

This function determines whether the scaling of a registered data type
is trivial. In [Slope Bias] representation, fixed-point numbers can be
represented as

real-world value = (slope X integer) + bias.

In the trivial case, slope = 1 and bias = 0.

In terms of binary-point-only scaling, the binary point is to the right
of the least significant bit for trivial scaling, meaning that the fraction
length is zero:

real-world value = integer x 2-fractionlength = jpnteger x 20,

In either case, trivial scaling means that the real-world value is simply
equal to the stored integer value:

real-world value = integer.

Scaling 1s always trivial for pure integers, such as int8, and also for the
true floating-point types single and double.

This function errors out when ssGetDataTypeIsFxpFltApiCompat
returns FALSE.

A-63

ssGetDataTypelsScalingTrivial

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-5.

Languages C

TLC FixPt_DataTypeIsScalingTrivial
Functions

See Also ssGetDataTypeIsScalingPow2

A-64

ssGetDataTypeNumberOfChunks

Purpose
Syntax

Arguments

Description

Requirement

Languages

See Also

Return number of chunks in multiword storage container of registered
data type

extern int ssGetDataTypeNumberOfChunks(SimStruct *S,
DTypeld dataTypeld)

SimStruct representing an S-function block.

dataTypeld
Data type ID of the registered data type for which you want to
know the number of chunks in its multiword storage container.

This function returns the number of chunks in the multiword storage
container of the fixed-point data type designated by dataTypeld.
This function i1s valid only for a registered data type whose storage
container uses a multiword representation. You can use the
ssGetDataTypeStorageContainCat function to identify the storage
container category; for multiword storage containers, the function
returns the category FXP_STORAGE_MULTIWORD.

To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-5.

C

ssGetDataTypeStorageContainCat

A-65

ssGetDataTypeStorageContainCat

Purpose Return storage container category of registered data type
Syntax extern fxpStorageContainerCategory
ssGetDataTypeStorageContainCat (SimStruct *S, DTypeld dataTypeld)
Arguments s
SimStruct representing an S-function block.
dataTypeld
Data type ID of the registered data type for which you want to
know the container category.
Description This function returns the storage container category of the data type

designated by dataTypeId. The container category returned by this
function is used to store input and output signals, run-time parameters,
and DWorks during Simulink simulations.

During simulation, fixed-point signals are held in one of the types of
containers shown in the following table. Therefore in many cases,
signals are represented in containers with more bits than their actual
word length.

Fixed-Point Storage Containers

Container
Signal Word
Container Category Word Length | Length Container Size
FXP_STORAGE_INT8 (signed) 1 to 8 bits 8 bits 1 byte
FXP_STORAGE_UINTS8 (unsigned)
FXP_STORAGE_INT16 (signed) 9 to 16 bits 16 bits 2 bytes
FXP_STORAGE_UINT16 (unsigned)

A-66

ssGetDataTypeStorageContainCat

Fixed-Point Storage Containers (Continued)

Container
Signal Word
Container Category Word Length | Length Container Size
FXP_STORAGE_INT32 (signed) 17 to 32 bits 32 bits 4 bytes
FXP_STORAGE_UINT32 (unsigned)
FXP_STORAGE_OTHER_SINGLE_WORD | 33 to word Length of Length of 1ong data
length of 1long | long data type
data type type
FXP_STORAGE_MULTIWORD Greater than | Multiples of | Multiples of length
the word length of long | of 1ong data type to
length of long | data type to | 128 bits
data type to 128 bits

128 bits

When the number of bits in the signal word length is less than the size
of the container, the word length bits are always stored in the least

significant bits of the container. The remaining container bits must be
sign extended to fit the bits of the container:

¢ [f the data type is unsigned, then the sign-extended bits must be
cleared to zero.

e [f the data type is signed, then the sign-extended bits must be set to
one for strictly negative numbers, and cleared to zero otherwise.

The ssGetDataTypeStorageContainCat function can also return the

following values.

A-67

ssGetDataTypeStorageContainCat

Other Storage Containers

Container Category Description

FXP_STORAGE_UNKNOWN Returned if the storage container category is unknown

FXP_STORAGE_SINGLE Container type for a Simulink single

FXP_STORAGE_DOUBLE Container type for a Simulink double

FXP_STORAGE_SCALEDDOUBLE | Container type for a data type that has been overridden
with Scaled double

This function errors out when ssGetDataTypeIsFxpFltApiCompat
returns FALSE.

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-5.

Languages C
TLC Because the mapping of storage containers in simulation to storage
Functions containers in code generation is not one-to-one, the TLC functions

for storage containers in TLC are different from those in simulation.
Refer to “Storage Container TLC Functions” on page A-11 for more
information:

® FixPt_DataTypeNativeType

® FixPt_DataTypeStorageDouble

® FixPt_DataTypeStorageSingle

® FixPt_DataTypeStorageScaledDouble

® FixPt_DataTypeStorageSInt

e FixPt_DataTypeStorageUInt

® FixPt_DataTypeStorageSLong

A-68

ssGetDataTypeStorageContainCat
|

® FixPt DataTypeStorageULong
® FixPt_DataTypeStorageSShort
® FixPt_DataTypeStorageUShort

See Also ssGetDataTypeStorageContainerSize

A-69

ssGetDataTypeStorageContainerSize

Purpose Return storage container size of registered data type
Syntax extern size_t ssGetDataTypeStorageContainerSize
(SimStruct *S, DTypeld
dataTypeld)
Arguments s

SimStruct representing an S-function block.

dataTypeld
Data type ID of the registered data type for which you want to
know the container size.

Description This function returns the storage container size of the data type
designated by dataTypeId. This function returns the same value as
would the sizeof () function; it does not return the word length of
either the storage container or the data type. To get the word length of
the storage container, use ssGetDataTypeFxpContainWordLen. To get
the word length of the data type, use ssGetDataTypeFxpWordLength.

The container of the size returned by this function stores input and
output signals, run-time parameters, and DWorks during Simulink
simulations. It is also the appropriate size measurement to pass to
functions like memcpy().

This function errors out when ssGetDataTypeIsFxpFltApiCompat
returns FALSE.

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-5.

Languages C

Examples An sfix24 En10 data type has a word length of 24, but is actually
stored in 32 bits during simulation. For this signal,

A-70

ssGetDataTypeStorageContainerSize

TLC
Functions

See Also

® ssGetDataTypeStorageContainerSize or sizeof() returns 4,
which is the storage container size in bytes.

e ssGetDataTypeFxpContainWordLen returns 32, which is the storage
container word length in bits.

® ssGetDataTypeFxpWordLength returns 24, which is the data type
word length in bits.

FixPt_GetDataTypeStorageContainerSize

ssGetDataTypeFxpContainWordLen, ssGetDataTypeFxpWordLength
ssGetDataTypeStorageContainCat

A-71

ssGetDataTypeTotalSlope

A-72

Purpose

Syntax

Arguments

Description

Requirement

Return total slope of scaling of registered data type

extern double ssGetDataTypeTotalSlope (SimStruct *S, DTypeld
dataTypeld)

SimStruct representing an S-function block.

dataTypeld
Data type ID of the registered data type for which you want to
know the total slope.

Fixed-point numbers can be represented as
real-world value = (slope X integer) + bias,
where the slope can be expressed as
slope = fractional slope X 2exponent,

This function returns the total slope, rather than the fractional slope, of
the data type designated by dataTypelId. To get the fractional slope,
use ssGetDataTypeFracSlope:

e If the registered data type has trivial scaling, including double and
single data types, the function returns a total slope of 1.

e [If the registered data type is ScaledDouble, the function returns the
total slope of the nonoverridden data type. Refer to the examples
below.

This function errors out when ssGetDataTypeIsFxpFltApiCompat
returns FALSE.

To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-5.

ssGetDataTypeTotalSlope

Languages

Examples

TLC
Functions

See Also

C

The data type sfix32_En4 becomes f1ts32_En4 with data type override.
The total slope returned by this function in either case is 0.0625 (24).

The data type ufix16_s7p98 becomes fltu16_s7p98 with data type
override. The total slope returned by this function in either case is 7.98.

FixPt_DataTypeTotalSlope

ssGetDataTypeBias, ssGetDataTypeFixedExponent
ssGetDataTypeFracSlope

A-73

ssLogFixptinstrumentation

Purpose Record information collected during simulation

Syntax extern void ssLogFixptInstrumentation
(SimStruct *S,
double minValue,
double maxValue,
int countOverflows,
int countSaturations,
int countDivisionsByZero,
char *pStrName)

Arguments S
SimStruct representing an S-function block.

minValue
Minimum output value that occurred during simulation.

maxValue
Maximum output value that occurred during simulation.

countOverflows
Number of overflows that occurred during simulation.

countSaturations
Number of saturations that occurred during simulation.

countDivisionsByZero
Number of divisions by zero that occurred during simulation.

*pStrName
The string argument is currently unused.

Description ssLogFixptInstrumentation records information collected during a
simulation, such as output maximum and minimum, any overflows,
saturations, and divisions by zero that occurred. The Fixed-Point Tool
displays this information after a simulation.

Requirement To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-5.

A-74

ssLogFixptinstrumentation

Languages C

A-75

ssRegisterDataTypeFxpBinaryPoint

A-76

Purpose

Syntax

Arguments

Description

Register fixed-point data type with binary-point-only scaling and return
its data type ID

extern DTypeld ssRegisterDataTypeFxpBinaryPoint
(SimStruct *S,
int isSigned,
int wordLength,
int fractionLength,
int obeyDataTypeOverride)

S

SimStruct representing an S-function block.
isSigned

TRUE if the data type is signed.

FALSE if the data type is unsigned.
wordLength

Total number of bits in the data type, including any sign bit.
fractionLength

Number of bits in the data type to the right of the binary point.
obeyDataTypeOverride

TRUE indicates that the Data Type Override setting for the
subsystem is to be obeyed. Depending on the value of Data Type
Override, the resulting data type could be Double, Single,
Scaled double, or the fixed-point data type specified by the other
arguments of the function.

FALSE indicates that the Data Type Override setting is to be
ignored.

This function fully registers a fixed-point data type with the Simulink
software and returns a data type ID. Note that unlike the standard

Simulink function ssRegisterDataType, you do not need to take any
additional registration steps. The data type ID can be used to specify

ssRegisterDataTypeFxpBinaryPoint

Requirement

Languages

the data types of input and output ports, run-time parameters, and
DWork states. It can also be used with all the standard data type access
methods in simstruc.h, such as ssGetDataTypeSize.

Use this function if you want to register a fixed-point data type with
binary-point-only scaling. Alternatively, you can use one of the other
fixed-point registration functions:

e Use ssRegisterDataTypeFxpFSlopeFixExpBias to register a
data type with [Slope Bias] scaling by specifying the word length,
fractional slope, fixed exponent, and bias.

e Use ssRegisterDataTypeFxpScaledDouble to register a scaled
double.

e Use ssRegisterDataTypeFxpSlopeBias to register a data type with
[Slope Bias] scaling.

If the registered data type is not one of the Simulink built-in data types,
a Simulink Fixed Point software license is checked out. To prevent a
Simulink Fixed Point software license from being checked out when you
simply open or view a model, protect registration calls with

if (ssGetSimMode(S) != SS_SIMMODE_SIZES_CALL_ONLY)
ssRegisterDataType...

Note Because of the nature of the assignment of data type IDs, you
should always use API functions to extract information from a data type
ID about a data type in your S-function. For more information, refer

to “Data Type IDs” on page A-13.

To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-5.

C

A-77

ssRegisterDataTypeFxpBinaryPoint

A-78

TLC
Functions

See Also

None. Data types should be registered in the Simulink software.
Registration of data types is not supported in TLC.

ssRegisterDataTypeFxpFSlopeFixExpBias,
ssRegisterDataTypeFxpScaledDouble
ssRegisterDataTypeFxpSlopeBias

ssRegisterDataTypeFxpFSlopeFixExpBias

Purpose

Syntax

Arguments

Register fixed-point data type with [Slope Bias] scaling specified in
terms of fractional slope, fixed exponent, and bias, and return its data
type ID

extern DTypeld ssRegisterDataTypeFxpFSlopeFixExpBias
(SimStruct *S,
int isSigned,
int wordLength,
double fractionalSlope,
int fixedExponent,
double bias,
int obeyDataTypeOverride)

SimStruct representing an S-function block.

isSigned
TRUE if the data type is signed.

FALSE if the data type is unsigned.

wordLength
Total number of bits in the data type, including any sign bit.

fractionalSlope
Fractional slope of the data type.

fixedExponent
Exponent of the slope of the data type.

bias
Bias of the scaling of the data type.

obeyDataTypeOverride
TRUE indicates that the Data Type Override setting for the
subsystem is to be obeyed. Depending on the value of Data Type
Override, the resulting data type could be Double, Single,
Scaled double, or the fixed-point data type specified by the other
arguments of the function.

A-79

ssRegisterDataTypeFxpFSlopeFixExpBias

FALSE indicates that the Data Type Override setting is to be
ignored.

Description This function fully registers a fixed-point data type with the Simulink
software and returns a data type ID. Note that unlike the standard
Simulink function ssRegisterDataType, you do not need to take any
additional registration steps. The data type ID can be used to specify
the data types of input and output ports, run-time parameters, and
DWork states. It can also be used with all the standard data type access
methods in simstruc.h, such as ssGetDataTypeSize.

Use this function if you want to register a fixed-point data type by
specifying the word length, fractional slope, fixed exponent, and bias.
Alternatively, you can use one of the other fixed-point registration
functions:

® Use ssRegisterDataTypeFxpBinaryPoint to register a data type
with binary-point-only scaling.

® Use ssRegisterDataTypeFxpScaledDouble to register a scaled
double.

® Use ssRegisterDataTypeFxpSlopeBias to register a data type with
[Slope Bias] scaling.

If the registered data type is not one of the Simulink built-in data types,
a Simulink Fixed Point software license is checked out. To prevent a
Simulink Fixed Point software license from being checked out when you
simply open or view a model, protect registration calls with

if (ssGetSimMode(S) != SS_SIMMODE_SIZES_CALL_ONLY)
ssRegisterDataType...

A-80

ssRegisterDataTypeFxpFSlopeFixExpBias

Requirement

Languages

TLC
Functions

See Also

Note Because of the nature of the assignment of data type IDs, you
should always use API functions to extract information from a data type
ID about a data type in your S-function. For more information, refer

to “Data Type IDs” on page A-13.

To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-5.

C

None. Data types should be registered in the Simulink software.
Registration of data types is not supported in TLC.

ssRegisterDataTypeFxpBinaryPoint,
ssRegisterDataTypeFxpScaledDouble
ssRegisterDataTypeFxpSlopeBias

A-81

ssRegisterDataTypeFxpScaledDouble

Purpose

Syntax

Arguments

A-82

Register scaled double data type with [Slope Bias] scaling specified in
terms of fractional slope, fixed exponent, and bias, and return its data
type ID

extern DTypeld ssRegisterDataTypeFxpScaledDouble
(SimStruct *S,
int isSigned,
int wordLength,
double fractionalSlope,
int fixedExponent,
double bias,
int obeyDataTypeOverride)

SimStruct representing an S-function block.

isSigned
TRUE if the data type is signed.

FALSE if the data type is unsigned.

wordLength
Total number of bits in the data type, including any sign bit.

fractionalSlope
Fractional slope of the data type.

fixedExponent
Exponent of the slope of the data type.

bias
Bias of the scaling of the data type.

obeyDataTypeOverride
TRUE indicates that the Data Type Override setting for the
subsystem is to be obeyed. Depending on the value of Data Type
Override, the resulting data type could be Double, Single,

ssRegisterDataTypeFxpScaledDouble

Description

Scaled double, or the fixed-point data type specified by the other
arguments of the function.

FALSE indicates that the Data Type Override setting is to be
ignored.

This function fully registers a fixed-point data type with the Simulink
software and returns a data type ID. Note that unlike the standard
Simulink function ssRegisterDataType, you do not need to take any
additional registration steps. The data type ID can be used to specify
the data types of input and output ports, run-time parameters, and
DWork states. It can also be used with all the standard data type access
methods in simstruc.h, such as ssGetDataTypeSize.

Use this function if you want to register a scaled double data type.
Alternatively, you can use one of the other fixed-point registration
functions:

® Use ssRegisterDataTypeFxpBinaryPoint to register a data type
with binary-point-only scaling.

® Use ssRegisterDataTypeFxpFSlopeFixExpBias to register a
data type with [Slope Bias] scaling by specifying the word length,
fractional slope, fixed exponent, and bias.

® Use ssRegisterDataTypeFxpSlopeBias to register a data type with
[Slope Bias] scaling.

If the registered data type is not one of the Simulink built-in data types,
a Simulink Fixed Point software license is checked out. To prevent a
Simulink Fixed Point software license from being checked out when you
simply open or view a model, protect registration calls with

if (ssGetSimMode(S) != SS_SIMMODE_SIZES_CALL_ONLY)
ssRegisterDataType...

A-83

ssRegisterDataTypeFxpScaledDouble

A-84

Requirement

Languages

TLC
Functions

See Also

Note Because of the nature of the assignment of data type IDs, you
should always use API functions to extract information from a data type
ID about a data type in your S-function. For more information, refer

to “Data Type IDs” on page A-13.

To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-5.

C

None. Data types should be registered in the Simulink software.
Registration of data types is not supported in TLC.

ssRegisterDataTypeFxpBinaryPoint,
ssRegisterDataTypeFxpFSlopeFixExpBias,
ssRegisterDataTypeFxpSlopeBias

ssRegisterDataTypeFxpSlopeBias

Purpose

Syntax

Arguments

Description

Register data type with [Slope Bias] scaling and return its data type ID

extern DTypeld ssRegisterDataTypeFxpSlopeBias
(SimStruct *S,
int isSigned,
int wordLength,
double totalSlope,
double bias,
int obeyDataTypeOverride)

SimStruct representing an S-function block.

isSigned
TRUE if the data type is signed.

FALSE if the data type is unsigned.

wordLength
Total number of bits in the data type, including any sign bit.

totalSlope
Total slope of the scaling of the data type.

bias
Bias of the scaling of the data type.

obeyDataTypeOverride
TRUE indicates that the Data Type Override setting for the
subsystem is to be obeyed. Depending on the value of Data Type
Override, the resulting data type could be Double, Single,
Scaled double, or the fixed-point data type specified by the other
arguments of the function.

FALSE indicates that the Data Type Override setting is to be
ignored.

This function fully registers a fixed-point data type with the Simulink
software and returns a data type ID. Note that unlike the standard

A-85

ssRegisterDataTypeFxpSlopeBias

A-86

Requirement

Simulink function ssRegisterDataType, you do not need to take any
additional registration steps. The data type ID can be used to specify
the data types of input and output ports, run-time parameters, and
DWork states. It can also be used with all the standard data type access
methods in simstruc.h, such as ssGetDataTypeSize.

Use this function if you want to register a fixed-point data type
with [Slope Bias] scaling. Alternately, you can use one of the other
fixed-point registration functions:

e Use ssRegisterDataTypeFxpBinaryPoint to register a data type
with binary-point-only scaling.

e Use ssRegisterDataTypeFxpFSlopeFixExpBias to register a
data type with [Slope Bias] scaling by specifying the word length,
fractional slope, fixed exponent, and bias.

e Use ssRegisterDataTypeFxpScaledDouble to register a scaled
double.

If the registered data type is not one of the Simulink built-in data types,
a Simulink Fixed Point software license is checked out. To prevent a
Simulink Fixed Point software license from being checked out when you
simply open or view a model, protect registration calls with

if (ssGetSimMode(S) != SS_SIMMODE_SIZES_CALL_ONLY)
ssRegisterDataType...

Note Because of the nature of the assignment of data type IDs, you
should always use API functions to extract information from a data type
ID about a data type in your S-function. For more information, refer

to “Data Type IDs” on page A-13.

To use this function, you must include fixedpoint.h and fixedpoint.c.
For more information, see “Structure of the S-Function” on page A-5.

ssRegisterDataTypeFxpSlopeBias

Languages C

TLC None.

Functions

See Also ssRegisterDataTypeFxpBinaryPoint,

ssRegisterDataTypeFxpFSlopeFixExpBias,
ssRegisterDataTypeFxpScaledDouble

A-87

ssRegisterDataTypeFxpSlopeBias

A-88

A

accumulations
scaling recommendations 3-37
slope/bias encoding 3-37

accumulator data types 4-4
feedback controller example 9-45

addition
fixed-point block rules 3-50
scaling recommendations 3-34
slope/bias encoding 3-34

Additional Math and Discrete Library
support for blocks in 10-39

ALUs 3-49

API
fixed-point A-1

API function reference A-33
ssFxpConvert A-34
ssFxpConvertFromRealWorldValue A-36
ssFxpConvertToRealWorldValue A-38
ssFxpGetU32BitRegion A-39
ssFxpGetU32BitRegionCompliant A-41
ssFxpSetU32BitRegion A-43
ssFxpSetU32BitRegionCompliant A-45
ssGetDataTypeBias A-47
ssGetDataTypeFixedExponent A-48
ssGetDataTypeFracSlope A-50
ssGetDataTypeFractionLength A-52
ssGetDataTypeFxpContainWordLen A-53
ssGetDataTypeFxpIsSigned A-55
ssGetDataTypeFxpWordLength A-56
ssGetDataTypelsFixedPoint A-58
ssGetDataTypelsFloatingPoint A-59
ssGetDataTypelIsFxpFltApiCompat A-60
ssGetDataTypeIsScalingPow2 A-61
ssGetDataTypelIsScalingTrivial A-63
ssGetDataTypeNumberOfChunks A-65
ssGetDataTypeStorageContainCat A-66
ssGetDataTypeStorageContainerSize A-70
ssGetDataTypeTotalSlope A-72
ssLogFixptInstrumentation A-74

ssRegisterDataTypeFxpBinaryPoint A-76
ssRegisterDataTypeFxpFSlopeFixExpBias A-79
ssRegisterDataTypeFxpScaledDouble A-82
ssRegisterDataTypeFxpSlopeBias A-85

arithmetic logic units (ALUs) 3-49

arithmetic shifts 3-65

automatic data typing
feedback controller example 9-49
using simulation data 9-11

automatic data typing using derived data
workflow 9-25

automatic data typing using simulation data
workflow 9-11

base data type 4-4

feedback controller example 9-45
binary point 2-4
binary-point-only scaling 2-6
bits 2-4

hidden 2-27

multipliers 2-8

shifts 3-65
block configurations

selecting a data type 1-21
Bode plots 9-41

C

ceil function 3-7

ceiling
rounding 3-7

chopping 3-18

chunk arrays A-7

chunks A-7

code generation 11-2
signal conversions 3-48
summation 3-52

code optimization 11-9

Index-1

Index

Commonly Used Blocks Library
support for blocks in 10-39
computational noise 3-2
rounding 3-4
computational units 3-49
configuring fixed-point blocks 1-19
constant scaling for best precision 2-13
limitations for code generation 11-7
containers
fixed-point API A-7
contiguous bits 2-26
Continuous Library
support for blocks in 10-39
convergent
rounding 3-8
convergent function 3-9
conversions 3-46
parameter 3-45
signal 3-46
See also online conversion, offline conversion

D

data type IDs A-13
for built-in data types A-15
data types 1-21
fractional numbers 1-22
generalized fixed-point numbers 1-22
IEEE numbers 1-23
integers 1-21
parameters 2-11
registering fixed-point A-14
denormalized numbers 2-31
development cycle 1-17
digital controllers 9-42
digital filters 4-2
direct form realization 4-8
feedback controller example 9-44
Discontinuities Library
support for blocks in 10-40

Index-2

Discrete Library
support for blocks in 10-40
division
fixed-point block rules 3-62
scaling recommendations 3-41
slope/bias encoding 3-41
double bits 3-55
double-precision formats 2-28

encoding schemes 2-6

eps function 2-30

examples
casting from doubles to fixed-point 1-38
conversions and arithmetic operations 3-67
division process 3-64
fixed-point format 2-8
limitations on precision and errors 3-20
limitations on range 3-31
maximizing precision 3-21
multiplication process 3-60
port data type display 2-23
saturation and wrapping 3-28
scaled doubles 2-20
selecting a measurement scale 1-8
summation process 3-52

exceptional arithmetic 2-31

exponents
IEEE numbers 2-27

external mode 11-7

F

feedback designs 9-39
filters
digital 4-2
fix function 3-17
Fixed-Point Advisor
example

Index

converting a model from floating-point

to fixed-point 5-14
fixing a task failure 5-8
introduction 5-2
running 5-7
fixed-point blocks
configuring 1-19
fixed-point data
reading from workspace 1-32
writing to workspace 1-32
fixed-point data types
registering A-14
fixed-point numbers
general format 2-3
scaling 2-5
fixed-point run-time API 1-35
fixed-point signal logging 1-35
Fixed-Point Tool
applying proposed data types 9-21 9-36
automatic data typing Simulink signal
objects 9-23
examining results 9-17 9-32
feedback controller example 9-45
opening 6-2
overview 6-2
proposing data types 9-15 9-29
tutorial 9-39
floating-point numbers 2-26
floor
rounding 3-10
floor function 3-10
fraction
IEEE numbers 2-27
fractional numbers 1-22
guard bits 3-31
fractional slope 2-6

G

gain

scaling recommendations 3-40
using slope/bias encoding 3-39
generalized fixed-point numbers 1-22
global overrides with doubles 9-48

guard bits 3-31

H
hidden bits 2-27

IEEE floating-point numbers
formats
double-precision 2-28
exponent 2-27
fraction 2-27
sign bit 2-26
single-precision 2-27
precision 2-30
range 2-29
infinity 2-31
installation 1-3
integers
data types 1-21

L

least significant bit (LSB) 2-4
limit cycles 3-2
feedback controller example 9-53
Logic and Bit Operations Library
support for blocks in 10-41
logical shifts 3-65
Lookup Table Library
support for blocks in 10-41
LSB (least significant bit) 2-4

M
MACs 3-49

Index-3

Index

Math Operations Library
support for blocks in 10-42
measurement scales 1-5
MEX-files
creating fixed-point A-23
fixed-point A-23
Model Advisor
code optimization 11-34
Model Verification Library
support for blocks in 10-44
Model-Wide Utilities Library
support for blocks in 10-44
modeling the system 1-17
most significant bit (MSB) 2-4
MSB (most significant bit) 2-4
multiplication
fixed-point block rules 3-55
scaling recommendations 3-38
slope/bias encoding 3-37
multiply and accumulate units 3-49

NaNs 2-31
nearest

rounding 3-11
nearest function 3-11

o

offline conversions
addition and subtraction 3-51
multiplication with zero bias and matching
fractional slopes 3-60
multiplication with zero bias and mismatched
fractional slopes 3-58
parameter conversions 3-46
signals 3-47
online conversions
addition and subtraction 3-51

Index-4

multiplication with zero bias and mismatched
fractional slopes 3-59
multiplication with zero biases and matching
fractional slopes 3-60
signals 3-47
optimization
code 11-9
using Model Advisor 11-34
overflows
code generation 11-3
definition 3-2
overrides with doubles
global override 9-48

P

padding with trailing zeros

definition 3-19

feedback controller example 9-43
parallel form realization 4-15
parameter conversions 3-45

See also conversions 3-45
Ports & Subsystems Library

support for blocks in 10-44
precision

fixed-point numbers 2-11

fixed-point parameters 3-46

IEEE floating-point numbers 2-30

Q

quantization 3-2
effects of fixed-point arithmetic 1-41
feedback controller example 9-47
real-world value 2-8
rounding 3-4

radix point 2-4
range

Index

fixed-point numbers 2-10

IEEE floating-point numbers 2-29
rapid simulation (rsim) target 11-8
reading fixed-point data from workspace 1-32
real-world values 2-6
realizations

design constraints 4-7

direct form 4-8

parallel form 4-15

series cascade form 4-12
registering fixed-point data types A-14
round

rounding 3-12
round function 3-13
rounding modes 3-4

code generation 11-3

convergent 3-8

round 3-12

simplest 3-14

toward ceiling 3-7

toward floor 3-10

toward nearest 3-11

toward zero 3-17
rsim target 11-8
run-time API

fixed-point data 1-35

S

S-functions
examples
fixed-point A-24
fixed-point A-1
fixed-point examples A-24
structure for fixed-point A-5
writing fixed-point A-1
saturation 3-28
scaling
accumulation 3-37
addition 3-34

binary-point-only 2-6

code generation 11-4

constant scaling for best precision 2-13

division 3-41

gain 3-39

multiplication 3-37

slope/bias 2-7

trivial A-3
scientific notation 2-26
series cascade form realizations 4-12
sharing fixed-point models 1-3
shifts 3-65
sign

extension 3-31
sign bit for IEEE numbers 2-26
Signal Attributes Library

support for blocks in 10-46
signal conversions 3-46
signal logging

fixed-point 1-35
Signal Routing Library

support for blocks in 10-46
simplest

rounding 3-14
Simulink acceleration modes 11-5
Simulink Coder

external mode 11-7

rapid simulation (rsim) target 11-8
Simulink Fixed Point features 1-19
Simulink signal objects

automatic data typing using Fixed-Point

Tool 9-23

single-precision format 2-27
Sinks Library

support for blocks in 10-47
slope/bias scaling 2-7
Sources Library

support for blocks in 10-47
ssFxpConvert A-34
ssFxpConvertFromRealWorldValue A-36

Index-5

Index

ssFxpConvertToRealWorldValue A-38 subtraction
ssFxpGetU32BitRegion A-39 See addition 3-36
ssFxpGetU32BitRegionCompliant A-41

ssFxpSetU32BitRegion A-43 T
ssFxpSetU32BitRegionCompliant A-45

ssGetDataTypeBias A-47 targeting an embedded processor
ssGetDataTypeFixedExponent A-48 deSign_I'U1eS 4-5
ssGetDataTypeFracSlope A-50 operatlon ass.umptions 4-4
ssGetDataTypeFractionLength A-52 size assumptions 4-4
ssGetDataTypeFxpContainWordLen A-53 trivial S_Cfﬂlling A-3
ssGetDataTypeFxpIsSigned A-55 truncation 3-18
ssGetDataTypeFxpWordLength A-56 two’s complement 2-4
ssGetDataTypelIsFixedPoint A-58

ssGetDataTypelIsFloatingPoint A-59 U

ssGetDataTypeIsFxpFltApiCompat A-60
ssGetDataTypeIsScalingPow2 A-61
ssGetDataTypeIsScalingTrivial A-63
ssGetDataTypeNumberOfChunks A-65
ssGetDataTypeStorageContainCat A-66
ssGetDataTypeStorageContainerSize A-70
ssGetDataTypeTotalSlope A-72

underflow 2-29
unsupported features
Simulink 10-37
User-Defined Functions Library
support for blocks in 10-48

ssLogFixptInstrumentation A-74 wW
ssRegisterDataTypeFxpBinaryPoint A-76 wrapping 3-28
ssRegisterDataTypeFxpFSlopeFix- writing fixed-point data to workspace 1-32

ExpBias A-79
ssRegisterDataTypeFxpScaledDouble A-82

ssRegisterDataTypeFxpSlopeBias A-85 y 4
storage containers Zero
fixed-point API A-7 rounding 3-17

stored integers 1-28

Index-6

	toc
	Getting Started
	Product Description
	Key Features

	What You Need to Get Started
	Installation
	Sharing Fixed-Point Models

	Physical Quantities and Measurement Scales
	Introduction
	Selecting a Measurement Scale
	Measurement Scales: Beyond Multiplication

	Selecting a Measurement Scale

	Why Use Fixed-Point Hardware?
	Why Use the Simulink Fixed Point Software?
	Developing and Testing Fixed-Point Systems
	Supported Data Types
	Simulink Fixed Point Software Features
	Configuring Blocks with Fixed-Point Output
	Specifying the Output Data Type and Scaling
	Specifying Fixed-Point Data Types with the Data Type Assistant
	Rounding
	Overflow Handling
	Locking the Output Data Type Setting
	Real-World Values Versus Stored Integer Values

	Configuring Blocks with Fixed-Point Parameters
	Specifying Fixed-Point Values Directly
	Specifying Fixed-Point Values Via Parameter Objects

	Passing Fixed-Point Data Between Simulink Models and the MATLAB
	Reading Fixed-Point Data from the Workspace
	Writing Fixed-Point Data to the Workspace
	Logging Fixed-Point Signals
	Accessing Fixed-Point Block Data During Simulation

	Automatic Data Typing Tools
	Fixed-Point Advisor
	Fixed-Point Tool

	Code Generation Capabilities

	Cast from Doubles to Fixed Point
	About This Example
	Block Descriptions
	Simulations
	Binary-Point-Only Scaling
	[Slope Bias] Scaling

	Data Types and Scaling
	Data Types and Scaling in Digital Hardware
	Fixed-Point Numbers
	Fixed-Point Numbers
	Signed Fixed-Point Numbers
	Binary Point Interpretation
	Scaling
	Binary-Point-Only Scaling
	Slope and Bias Scaling
	Unspecified Scaling

	Quantization
	Fixed-Point Format

	Range and Precision
	Range
	Precision
	Fixed-Point Data Type Parameters
	Range of an 8-Bit Fixed-Point Data Type — Binary-Point-Only Scal
	Range of an 8-Bit Fixed-Point Data Type — Slope and Bias Scaling

	Constant Scaling for Best Precision
	Fixed-Point Data Type and Scaling Notation
	Scaled Doubles
	What Are Scaled Doubles?
	When to Use Scaled Doubles

	Use Scaled Doubles to Avoid Precision Loss
	About the Model
	Running the Example

	Display Data Types for Ports in Your Model

	Floating-Point Numbers
	Floating-Point Numbers
	Scientific Notation
	The IEEE Format
	The Sign Bit
	The Fraction Field
	The Exponent Field
	Single-Precision Format
	Double-Precision Format

	Range and Precision
	Range
	Precision
	Floating-Point Data Type Parameters

	Exceptional Arithmetic
	Denormalized Numbers
	Inf
	NaN

	Arithmetic Operations
	Fixed-Point Arithmetic Operations
	Precision
	Limitations on Precision
	Rounding
	Choose a Rounding Mode
	Choosing a Rounding Mode for Diagnostic Purposes

	Rounding Modes for Fixed-Point Simulink Blocks
	Rounding Mode: Ceiling
	Rounding Mode: Convergent
	Rounding Mode: Floor
	Rounding Mode: Nearest
	Rounding Mode: Round
	Rounding Mode: Simplest
	Optimize Rounding for Casts
	Optimize Rounding for High-Level Arithmetic Operations
	Optimize Rounding for Intermediate Arithmetic Operations

	Rounding Mode: Zero
	Rounding to Zero Versus Truncation

	Pad with Trailing Zeros
	Limitations on Precision and Errors
	Maximize Precision
	Net Slope and Net Bias Precision
	What are Net Slope and Net Bias?
	Detecting Net Slope and Net Bias Precision Issues
	Fixed-Point Constant Underflow
	Fixed-Point Constant Overflow
	Fixed-Point Constant Precision Loss

	Detect Net Slope and Net Bias Precision Issues
	Detect Fixed-Point Constant Precision Loss

	Range
	Limitations on Range
	What Are Saturation and Wrapping?
	Saturation and Wrapping
	Guard Bits
	Determine the Range of Fixed-Point Numbers

	Recommendations for Arithmetic and Scaling
	Arithmetic Operations and Fixed-Point Scaling
	Addition
	Inherited Scaling for Speed
	Inherited Scaling for Maximum Precision
	Binary-Point-Only Scaling

	Accumulation
	Binary-Point-Only Scaling

	Multiplication
	Inherited Scaling for Speed
	Inherited Scaling for Maximum Precision
	Binary-Point-Only Scaling

	Gain
	Inherited Scaling for Speed
	Inherited Scaling for Maximum Precision

	Division
	Inherited Scaling for Speed
	Inherited Scaling for Maximum Precision
	Binary-Point-Only Scaling

	Summary

	Parameter and Signal Conversions
	Introduction
	Parameter Conversions
	Offline Conversions

	Signal Conversions
	Offline Conversions
	Online Conversions and Operations
	Streamlining Simulations and Generated Code

	Rules for Arithmetic Operations
	Introduction
	Computational Units
	Addition and Subtraction
	Fixed-Point Simulink Blocks Summation Process
	Streamlining Simulations and Generated Code

	The Summation Process
	Multiplication
	Fixed-Point Simulink Blocks Multiplication Process

	The Multiplication Process
	Division
	Fixed-Point Simulink Blocks Division Process

	The Division Process
	Shifts
	Shifting Bits to the Right

	Conversions and Arithmetic Operations

	Realization Structures
	Realizing Fixed-Point Digital Filters
	Introduction
	Realizations and Data Types

	Targeting an Embedded Processor
	Introduction
	Size Assumptions
	Operation Assumptions
	Design Rules
	Design Rule 1: Only Multiply Base Data Types
	Design Rule 2: Delays Should Use the Base Data Type
	Design Rule 3: Temporary Variables Can Use the Accumulator Data
	Design Rule 4: Summation Can Use the Accumulator Data Type

	Canonical Forms
	Canonical Forms
	Direct Form II
	Series Cascade Form
	Parallel Form

	Fixed-Point Advisor
	Preparation for Fixed-Point Conversion
	Introduction
	Best Practices
	Use a Known Working Model
	Back Up Your Model
	Convert Small Models
	Convert Subsystems
	Specify Short Simulation Run Times
	Make Small Changes to Your Model
	Isolate the System Under Conversion
	Use Lock Output Data Type Setting
	Save Simulink Signal Objects
	Save Restore Point

	Data Type Propagation Errors
	Run the Fixed-Point Advisor
	Fix a Task Failure
	Manually Fixing Failures
	Automatically Fixing Failures
	Batch Fixing Failures
	Restore Points
	Save a Restore Point
	When to Save a Restore Point
	How to Save a Restore Point

	Load a Restore Point
	When to Load a Restore Point
	How to Load a Restore Point

	Converting a Model from Floating- to Fixed-Point Using Simulatio
	About This Example
	Starting the Preparation
	Preparing Model for Conversion
	Prepare for Data Typing and Scaling
	Propose Data Types Based on the Simulation Reference Run
	Apply the New Fixed-Point Data Types
	Simulate the Model Using New Fixed-Point Settings

	Fixed-Point Tool
	Overview of the Fixed-Point Tool
	Introduction to the Fixed-Point Tool
	Using the Fixed-Point Tool

	Run Management
	About Run Management
	Run Management with the Shortcut Editor
	Manual Run Management

	Why Use Shortcuts to Manage Runs
	When to Use Shortcuts to Manage Runs
	Add Shortcuts
	Edit Shortcuts
	Delete Shortcuts
	Capture Current Model Settings Using the Shortcut Editor

	Debug a Fixed-Point Model
	Simulating the Model to See the Initial Behavior
	Debugging the Model
	Setting Up Shortcuts
	Testing Subsystem Math1 Settings
	Testing Subsystem Math2 Settings

	Simulating the Model Using a Different Input Stimulus
	Debugging the Model with the New Input
	Proposing Fraction Lengths for Math2 Based on Simulation Results
	Verifying the New Settings

	Logging Simulation Minimum and Maximum Values for Referenced Mod
	Viewing Simulation Minimum and Maximum Values for Referenced Mod
	Fixed-Point Instrumentation and Data Type Override Settings
	See Also

	Log Simulation Minimum and Maximum Values for Referenced Models
	Simulate the Model Using Local Settings
	Gather a Floating-Point Benchmark
	See Also

	Propose Data Types for a Referenced Model
	Logging Simulation Minimum and Maximum Values for a MATLAB Funct
	See Also

	Log Simulation Minimum and Maximum Values for a MATLAB Function
	See Also

	View Signal Names in the Fixed-Point Tool

	Automatically Converting a Floating-Point Model to Fixed Point
	Learning Objectives
	Model Description
	Model Overview
	Model Set Up
	Source
	Controller Subsystem
	Scope

	Before You Begin
	Automatically Converting a Floating-Point Model to Fixed Point
	Open the Model
	Prepare Floating-Point Model for Conversion to Fixed Point
	Open the Fixed-Point Advisor
	Prepare Model for Conversion
	Prepare for Data Typing and Scaling
	Return to Fixed-Point Tool to Perform Data Typing and Scaling

	Propose Data Types
	Apply Fixed-Point Data Types
	Verify Fixed-Point Settings
	Test Fixed-Point Settings With New Input Data
	Gather a Floating-Point Benchmark
	Propose Data Types for the New Input
	Apply the New Fixed-Point Data Types
	Verify New Fixed-Point Settings
	Prepare for Code Generation

	Key Points to Remember
	Where to Learn More

	Producing Lookup Table Data
	Producing Lookup Table Data
	Worst-Case Error for a Lookup Table
	What Is Worst-Case Error for a Lookup Table?
	Approximate the Square Root Function

	Create Lookup Tables for a Sine Function
	Introduction
	Parameters for fixpt_look1_func_approx
	Using Only errmax
	Using Only nptsmax
	Spacing

	Setting Function Parameters for the Lookup Table
	Using errmax with Unrestricted Spacing
	Creating the Lookup Table
	Plotting the Results

	Using nptsmax with Unrestricted Spacing
	Setting the Number of Breakpoints
	Creating the Lookup Table
	Plotting the Results
	Restricting the Spacing

	Using errmax with Even Spacing
	Using nptsmax with Even Spacing
	Using errmax with Power of Two Spacing
	Using nptsmax with Power of Two Spacing
	Specifying Both errmax and nptsmax
	Comparison of Example Results

	Use Lookup Table Approximation Functions
	Effects of Spacing on Speed, Error, and Memory Usage
	Criteria for Comparing Types of Breakpoint Spacing
	Model That Illustrates Effects of Breakpoint Spacing
	Data ROM Required for Each Lookup Table
	Uneven Case
	Even Case
	Power of Two Case

	Determination of Out-of-Range Inputs
	How the Lookup Tables Determine Input Location
	Uneven Case
	Even Case
	Power of Two Case
	Comparison

	Interpolation for Each Lookup Table
	Uneven Case
	Even Case
	Power of Two Case

	Summary of the Effects of Breakpoint Spacing

	Automatic Data Typing
	About Automatic Data Typing
	Before Using the Fixed-Point Tool to Propose Data Types for Your
	Best Practices for Using the Fixed-Point Tool to Propose Data Ty
	Use a Known Working Simulink Model
	Back Up Your Simulink Model
	Capture the Current Fixed-Point Instrumentation and Data Type Ov
	Convert Individual Subsystems
	Isolate the System Under Conversion
	Use Lock Output Data Type Setting
	Save Simulink Signal Objects
	Test Update Diagram Failure

	Models That Might Cause Data Type Propagation Errors
	Automatic Data Typing Using Simulation Data
	Workflow for Automatic Data Typing Using Simulation Data
	Set Up the Model
	Prepare the Model for Conversion
	Gather a Floating-Point Benchmark
	Proposing Data Types
	Propose Data Types
	Examine Results to Resolve Conflicts
	Summary
	Proposed Data Type Summary
	Needs Attention
	Shared Data Type Summary
	Constrained Data Type Summary
	Data Type Details
	To Examine the Results and Resolve Conflicts

	Apply Proposed Data Types
	Verify New Settings
	Automatic Data Typing of Simulink Signal Objects

	Automatic Data Typing Using Derived Minimum and Maximum Values
	Prerequisites for Automatic Data Typing Using Derived Minimum an
	Workflow for Automatic Data Typing Using Derived Data
	Set Up the Model
	Prepare Model Prior to Automatic Data Typing Using Derived Data
	Derive Minimum and Maximum Values
	Resolve Range Analysis Issues
	Proposing Data Types
	Propose Data Types
	Examine Results to Resolve Conflicts
	Summary
	Proposed Data Type Summary
	Needs Attention
	Shared Data Type Summary
	Constrained Data Type Summary
	Data Type Details
	To Examine the Results and Resolve Conflicts

	Apply Proposed Data Types
	Update Diagram

	Propose Fraction Lengths
	Propose Fraction Lengths
	About the Feedback Controller Example Model
	Opening the Feedback Controller Model
	Simulation Setup
	Idealized Feedback Design
	Digital Controller Realization

	Propose Fraction Lengths Using Simulation Range Data
	Initial Guess at Scaling
	Data Type Override
	Automatic Data Typing

	Propose Word Lengths
	How the Fixed-Point Tool Proposes Word Lengths
	How the Fixed-Point Tool Uses Range Information
	How the Fixed-Point Tool Uses Target Hardware Information

	Propose Word Lengths
	Propose Word Lengths Based on Simulation Data

	Propose Data Types Using Multiple Simulations
	About This Example
	About the Model
	Merging Results from Two Simulation Runs

	Running the Simulation
	Simulate the Model Using Random Uniform Noise
	Simulate the Model Using Band-Limited White Noise
	Merge Results
	Propose Fraction Lengths Based on Merged Results

	View Simulation Results
	Compare Runs
	Compare Signals
	Inspect Signals
	Histogram Plot of Signal
	See Also

	Viewing Results With the Simulation Data Inspector
	Why Use the Simulation Data Inspector
	When to Use the Simulation Data Inspector
	What You Can Inspect in the Simulation Data Inspector
	See Also

	Range Analysis
	How Range Analysis Works
	System Requirements
	Analyzing a Model with Range Analysis
	Automatic Stubbing
	What is Automatic Stubbing?
	How Automatic Stubbing Works

	Model Compatibility with Range Analysis

	Derive Ranges
	Derive Ranges at the Subsystem Level
	Deriving Ranges at the Subsystem Level
	When to Derive Ranges at the Subsystem Level

	Derive Ranges at the Subsystem Level

	View Derived Range Information in the Fixed-Point Tool
	Range Analysis Examples
	Derive Ranges Using Design Minimum and Maximum Values
	Derive Ranges Using Block Initial Conditions
	Derive Ranges Using Design Range Information for Simulink.Parame
	Insufficient Design Range Information
	Providing More Design Range Information
	Fixing Design Range Conflicts

	Derive Ranges for a Referenced Model
	Derive Ranges
	View Derived Ranges for Referenced Model
	Add Design Range for Sum Block and Derive Ranges
	See Also

	Propose Data Types for a Referenced Model
	See Also

	Deriving Ranges for a Referenced Model
	Viewing Derived Minimum and Maximum Values for Referenced Models
	Data Type Override Settings
	See Also

	Unsupported Simulink Software Features
	Supported and Unsupported Simulink Blocks
	Overview of Simulink Block Support
	Additional Math and Discrete Library
	Commonly Used Blocks Library
	Continuous Library
	Discontinuities Library
	Discrete Library
	Logic and Bit Operations Library
	Lookup Tables Library
	Math Operations Library
	Model Verification Library
	Model-Wide Utilities Library
	Ports & Subsystems Library
	Signal Attributes Library
	Signal Routing Library
	Sinks Library
	Sources Library
	User-Defined Functions Library
	Limitations of Support for Model Blocks

	Code Generation
	Generating and Deploying Production Code
	Code Generation Support
	Introduction
	Languages
	Data Types
	Rounding Modes
	Overflow Handling
	Blocks
	Scaling

	Accelerating Fixed-Point Models
	Using External Mode or Rapid Simulation Target
	Introduction
	External Mode
	Rapid Simulation Target

	Optimize Your Generated Code
	Tips for Reducing ROM Consumption or Model Execution Time
	Restrict Data Type Word Lengths
	Avoid Fixed-Point Scalings with Bias
	Wrap and Round to Floor or Simplest
	Limit the Use of Custom Storage Classes
	Limit the Use of Unevenly Spaced Lookup Tables
	Minimize the Variety of Similar Fixed-Point Utility Functions
	Handle Net Slope Correction
	When to Use Integer Division to Handle Net Slope Correction
	When Not to Use Integer Division to Handle Net Slope Correction

	Use Integer Division to Handle Net Slope Correction
	Use Integer Division to Handle Net Slope to Improve Numerical Ac
	Use Integer Division to Handle Net Slope to Improve Efficiency o
	Optimize Generated Code Using Specified Minimum and Maximum Valu
	Prerequisites
	How to Configure Your Model
	How to Enable Simulation Range Checking
	How to Enable Optimization
	Limitations

	Use Specified Minimum and Maximum Values to Eliminate Unnecessar
	Generate Code Without Using Minimum and Maximum Values
	Generate Code Using Minimum and Maximum Values
	Modify the Specified Minimum and Maximum Values

	Optimizing Your Generated Code with the Model Advisor
	Use Model Advisor to Optimize Generated Code
	Optimize Lookup Table Data
	Reduce Cumbersome Multiplications
	Optimize the Number of Multiply and Divide Operations
	Reduce Multiplies and Divides with Nonzero Bias
	Eliminate Mismatched Scaling
	Minimize Internal Conversion Issues
	Use the Most Efficient Rounding
	How to Specify Rounding for Fixed-Point Operations
	How to Choose the Most Efficient Rounding
	Model Advisor Rounding Mode Checks

	Optimize Net Slope Correction
	How the Model Advisor Helps You Optimize Net Slope Correction
	Using the Model Advisor to Verify that Your Model Configuration
	Using the Model Advisor to Detect When to Use Integer Division f

	Fixed-Point Advisor Reference
	Fixed-Point Advisor
	Fixed-Point Advisor Overview
	Description
	Procedures
	See Also

	Prepare Model for Conversion
	Prepare Model for Conversion Overview
	Description
	See Also

	Verify model simulation settings
	Description
	Results and Recommended Actions
	Action Results
	See Also

	Verify update diagram status
	Description
	Results and Recommended Actions
	See Also

	Address unsupported blocks
	Description
	Results and Recommended Actions
	Tips
	See Also

	Set up signal logging
	Description
	Analysis Result and Recommended Actions
	Tips

	Create simulation reference data
	Description
	Input Parameters
	Results and Recommended Actions
	Action Results
	Tips

	Verify Fixed-Point Conversion Guidelines Overview
	Description
	See Also

	Check model configuration data validity diagnostic parameters se
	Description
	Results and Recommended Actions
	Action Results

	Implement logic signals as Boolean data
	Description
	Results and Recommended Actions
	Action Results

	Check for proper bus usage
	Description
	Results and Recommended Actions

	Simulation range checking
	Description
	Results and Recommended Actions
	Action Results

	Check for implicit signal resolution
	Description
	Results and Recommended Actions
	Action Results
	See Also

	Prepare for Data Typing and Scaling
	Prepare for Data Typing and Scaling Overview
	Description
	Tips
	See Also

	Review locked data type settings
	Description
	Results and Recommended Actions
	Action Results

	Remove output data type inheritance
	Description
	What are Floating-Point Inheritance Blocks?
	Input Parameters
	Results and Recommended Actions
	Action Results

	Relax input data type settings
	Description
	Results and Recommended Actions
	Action Results
	Tip

	Verify Stateflow charts have strong data typing with Simulink
	Description
	Results and Recommended Actions
	Action Results

	Remove redundant specification between signal objects and blocks
	Description
	Input Parameters
	Results and Recommended Actions
	Action Results

	Verify hardware selection
	Description
	Input Parameters
	Results and Recommended Actions
	See Also

	Specify block minimum and maximum values
	Description
	Results and Recommended Actions
	Tips
	See Also

	Return to the Fixed-Point Tool to Perform Data Typing and Scalin
	See Also

	Writing Fixed-Point S-Functions
	Data Type Support
	Supported Data Types
	The Treatment of Integers
	Data Type Override

	Structure of the S-Function
	Storage Containers
	Introduction
	Storage Containers in Simulation
	Storage Container Categories
	Storage Containers in Simulation Example

	Storage Containers in Code Generation
	Emulation
	Storage Container TLC Functions

	Data Type IDs
	The Assignment of Data Type IDs
	Registering Data Types
	Preassigned Data Type IDs

	Setting and Getting Data Types
	Getting Information About Data Types
	Converting Data Types

	Overflow Handling and Rounding Methods
	Tokens for Overflow Handling and Rounding Methods
	Overflow Logging Structure

	Create MEX-Files
	Fixed-Point S-Function Examples
	List of Fixed-Point S-Function Examples
	Get the Input Port Data Type
	Set the Output Port Data Type
	Interpret an Input Value
	Write an Output Value
	Use the Input Data Type to Determine the Output Data Type

	API Function Reference

	Index

	tables
	Fixed-Point Data Type Range and Default Scaling
	Fixed-Point Storage Containers
	Other Storage Containers
	Data Type Registration Functions
	Storage Container Information Functions
	Signal Data Type Information Functions
	Signal Scaling Information Functions
	Data Type Conversion Functions
	Overflow Handling Tokens
	Rounding Method Tokens
	Fixed-Point Storage Containers
	Other Storage Containers

